Supporting Information

Techno-economic Feasibility and Spatial Analysis of Thermochemical Conversion Pathways for Regional Poultry Waste Valorization

Raaj R. Bora¹, Yanqiu Tao¹, Johannes Lehmann^{2, 3}, Jefferson W. Tester^{1, 3}, Ruth E. Richardson^{3,} ⁴, Fengqi You^{1, 3,*}

¹ Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA

² Soil and Crop Sciences, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, USA

³ Atkinson Center for a Sustainable Future, Cornell University, Ithaca, New York 14853, USA

⁴ School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA

This file contains: 42 pages, 5 sections, 22 tables and 5 figures.

^{*} Corresponding author. E-mail: fengqi.you@cornell.edu

List of Sections

Section 1. Simulation cases

- Section 1.1. Slow pyrolysis
- Section 1.2. Fast pyrolysis
- Section 1.3. Hydrothermal liquefaction
- Section 1.4. Gasification
- Section 1.5. Other parameters

Section 2. Spatial analysis

- Section 2.1. Bio-oil upgrading
- Section 2.2. Biochar distribution and application
- Section 2.3. Economic considerations

Section 3. Economic results

• Section 3.1. Equipment costs and NPV calculation Section 3.2. Sensitivity analysis results

Section 4. Spatial analysis results

• Section 4.1. Spatial distribution of soil phosphorus contents does not constrain application

Section 5. Additional information and data

List of Tables

- **Table S1.** Input poultry litter elemental composition.
- **Table S2.** Names, operating parameters and modeling units used for the important components in the Aspen Plus simulations
- **Table S3.** Description of scenarios for spatial analysis in terms of number of plants, technology and capacity
- **Table S4.** Product phase distribution for the four thermochemical technologies (slow pyrolysis, fast pyrolysis, gasification and hydrothermal liquefaction).
- **Table S5.** Equipment price distribution for fast pyrolysis technology.
- **Table S6.** Equipment price distribution for slow pyrolysis technology.
- **Table S7.** Equipment price distribution for gasification technology.
- Table S8. Equipment price distribution for hydrothermal liquefaction technology.
- **Table S9.** Price of the important utilities.

- **Table S10.** Product market prices used for the revenue calculations.
- Table S11. Revenue generation distribution for the nine cases considered.
- **Table S12.** NPV calculation for FP-SELL case.
- Table S13. NPV calculation for SP-CHAR case.
- **Table S14.** NPV calculation for SP-COMB case.
- Table S15. GWP 100-year factors of some of the chemicals involved in the simulations.
- **Table S16.** Net present value (NPV) and greenhouse gas (GHG) inventory results for the nine considered cases.
- **Table S17.** Syngas production potential through slow pyrolysis for the 14 CAFOs and the corresponding power that can be generated.
- **Table S18.** Syngas production potential through fast pyrolysis for the 14 CAFOs and the corresponding power that can be generated.
- Table S19. Details and poultry numbers in each CAFO for NYS.
- **Table S20.** Distribution of poultry numbers in NYS based on counties.
- Table S21. Parameters and their values, units and meaning for the spatial analysis.
- **Table S22.** List of considered existing refinery equipment that is capable of processing certain amounts of produced bio-oil.

List of Figures

- Figure S1. Schematic process flow diagrams
- **Figure S2.** Map containing distribution, names, and annual poultry litter generation amounts (ton/year) for the CAFOs in NYS, as well as existing crude refineries near the State
- **Figure S3.** Trade-off between economic and environmental performance illustrated through the plot of NPV against greenhouse gas emissions for the nine cases
- Figure S4. Sensitivity analysis results
- Figure S5. Spatial distribution of phosphorus in New York State (NYS).
- Figure S6. Annualized economic breakdown

1. SIMULATION CASES AND PARAMETERS

The major thermochemical technologies analyzed in the study are pyrolysis, gasification and hydrothermal liquefaction (HTL). Pyrolysis can be tuned based on reaction temperature and residence time to produce two useful products in the absence of oxygen.¹ With fast pyrolysis (FP) (500°C or lesser), the major product is bio-oil which can be further upgraded to green gasoline and diesel, whereas with slow pyrolysis (SP) (400-600°C), it is biochar, a soil amendment with potential for long-term carbon sequestration.²⁻³ Gasification is a more mature thermochemical technology, with many large-scale coal processing plants operational owing to the benefits of the syngas product as compared to conventional combustion.⁴ HTL (300-450°C), unlike the others, is a novel technology which requires no drying of the feedstock, as it use subcritical water as the reaction medium.⁵⁻⁷

The important parameters in the simulations include operating conditions (pressure, temperature, flow rate) for each equipment unit, kinetic and thermodynamic parameters (reaction rates, product distribution, phase equilibrium and separation, heat recovery), as well as various ratios and efficiency considerations (equivalence ratio, conversion efficiency, product ratio). However, the values and assumptions associated with each of these parameters are different for each technology, and this is further explained through Table S1, Figure S1 and the following subsections. The input feed composition was derived after going through multiple papers on thermochemical treatment of poultry litter.⁸⁻¹⁰ Importantly, the moisture content of the feed (22.81%) and the other elemental concentration reflects the average poultry litter composition in the northeastern states of USA, which includes NYS.¹¹ The operating conditions for the simulations for each of the technologies were based on multiple papers and government reports and have been summarized in Table S2.¹²⁻¹⁵ The operating conditions were optimized to aid in processing poultry litter, though it has not been explicitly mentioned in the manuscript. First, the selection of initial operating parameters was done after going through multiple experimental studies. Additionally, during the simulations, an effort was made to continuously update certain operating parameters to ensure the best performance of the systems.

Element	Amount (% w/w)
Moisture	22.81
Ash	15.33
С	34.05
Н	4.42
Ν	2.89
0	42.68
S	0.63

Table S1. Input poultry litter elemental composition.⁸⁻⁹

1.1. Slow pyrolysis: The main components of each slow pyrolysis system considered are the dryer, the pyrolysis reactor, the phase separators and other auxiliary equipment such as pumps and compressors. Poultry litter is dried from 22.8% to 10% moisture content using a rotary dryer. The output of the dryer is fed to the pyrolysis reactor which in turn produces biochar, bio-oil, and off gas. The bio-oil is considered to be sold to existing nearby refineries owing to its small production quantities.¹⁶⁻¹⁷ The off-gas has the option to either be combusted or sent to a combined heat and power plant (CHP) in the spatial analysis depending on the scale of the plant. In the SP-COMB case, the biochar is considered to be combusted to produce additional heat and electricity, and to avoid additional transportation. As against this, the biochar is distributed and sold for land application in the SP-CHAR case, and is utilized for the spatial analysis scenarios, too. Unlike the other technologies, the optimum capacity for slow pyrolysis reactors so far has been found to be relatively small (1-2 tons/hour), so multiple parallel reactors are used to model plants with higher flowrates. The feed stream is assumed to go through drying and grinding before splitting into multiple parallel streams. The products from each reactor on separation then find their way into combined product streams.

1.2. Fast pyrolysis: The fast pyrolysis process is modeled in a similar way as the slow pyrolysis process, with only major differences in the reactor scaling and the downstream processing options.¹⁸⁻¹⁹ The bio-oil has the option of being sold to an existing refinery (FP-SELL) or to be upgraded within a dedicated facility built specifically for hydrotreating and further processing the bio-oil (FP-UPGRADE). The off-gas is treated in a similar manner as that of slow pyrolysis, and

the biochar is assumed to have the same market value as the biochar from slow pyrolysis too.²⁰ The upgrading plant for the bio-oil includes a hydrotreater, multiple separation and distillation units, as well as a hydrogen production unit (Figure S1).^{9-10, 12, 21-22}

1.3. Hydrothermal liquefaction: For HTL, the poultry litter feed is sent to the reactor without the need for drying, and there is the production of four phases - bio-oil phase, a solid hydrochar phase, a gas phase, and an aqueous phase. The aqueous phase consisting of water and organic compounds is sent to an anaerobic digester (AD) to recover the organic contents and ameliorate environmental concerns, as well as to produce valuable biogas. The bio-oil, similar to the case of fast pyrolysis, is either sold to an existing refinery (HP-SELL) or sent to a customized upgrading unit (HP-UPGRADE) with slightly different configurations owing to the differences in the composition and properties of the two bio-oils. The gaseous phase is not considered useful owing to the high CO_2 levels, but the hydrochar is considered to be sold as a soil amendment without the carbon storage abilities present in biochar.¹³⁻¹⁴

1.4. Gasification: The gasification model consists of the gasification reactor, syngas cleaning unit, energy production unit and other auxiliary equipment.¹⁵ The major products of the process are the syngas and relatively small amounts of biochar. The three cases for gasification are all based on how the gas phase is processed (Table 1 in the main body). The raw syngas is sent to a gas cleaning unit before undergoing the Fischer-Tropsch synthesis in the GA-FT case. The oil obtained is further sent to a hydroprocessing and separation unit for upgrading into valuable products like gasoline and diesel.²³⁻²⁴ The other two cases for gasification involve either combusting the syngas or sending it to a CHP for recovery of both heat and electricity that could be used both within the process as well as used to generate revenue.²⁵⁻²⁷

(a)

(b)

Figure S1. Schematic process flow diagram of (a) fast pyrolysis pathway with downstream processing of the bio-oil to obtain transportation fuels (FP-UPGRADE) (b) gasification pathway involving Fischer Tropsch process to convert syngas into liquid fuels (GA-FT) (c) hydrothermal liquefaction pathways with upgrading of bio-oil to obtain transportation fuels (HTL-UPGRADE). All the other pathways involve certain parts of these flowsheets. The main utilities are represented through different colors with the gray streams representing electricity, orange streams representing heat, and blue streams representing chilled water.

1.5. Other parameters: In addition to the simulation and economic parameters, there are some other assumptions and parameters which have to be considered and assigned values based on either calculations or literature such as transportation, greenhouse gas emission and sensitivity analysis parameters. The average transportation distances of 50 km for poultry litter, biochar and bio-oil are used in the economic analysis. However, this value can easily vary based on the distribution of farms and plants and hence the spatial analysis is used to accurately obtain these values in the case study for NYS presented in the Spatial Analysis Section of the main manuscript. The greenhouse gas emission inventory is compiled entirely based on the simulations and certain

literature values. Emissions from transportation, plant operation, direct utility consumption and biochar soil application are incorporated in the results. Furthermore, in order to identify the influential parameters which could have large impacts on the analysis, sensitivity analyses are conducted for both slow pyrolysis and fast pyrolysis cases. The parameters are chosen after identifying the parameters which lead to the highest change in the NPV values, and their range and base case values are derived from the simulations and literature (Table S20).

Sr. No.	Equipment	Temperature (K)	Pressure (atm)	In scenario(s)	Modeled as	Reference
1	Gasification reactor	1573	26	GA-FT, GA-CHP, GA-COMB	RGibbs reactor	15
2	Fast pyrolysis reactor	773	1	FP-SELL, FP- UPGRADE	RStoic reactor	12, 20
3	Slow pyrolysis reactor	923	1	SP-COMB	RStoic reactor	26, 31
4	Hydrothermal liquefaction reactor	623	200	SP-CHAR	RYield reactor	13, 14
5	Preheater	372	1	ALL	HeatX	-
6	Air compressor	-	26	GA-FT, GA-CHP, GA-COMB	Compressor	-

Table S2. Names, operating parameters and modeling units used for the important components in the Aspen Plus simulations^{12-15, 20, 26, 28-31}

7	Dryer	363	1	GA-FT, GA-CHP, GA-COMB, FP- SELL, FP- UPGRADE, SP- COMB, SP-CHAR	RStoic + Flash	30
8	Hydrotreater	672	172	GA-FT, FP- UPGRADE, HTL- UPGRADE	RYield reactor	13, 20
9	Hydrocracker	700	87	GA-FT, FP- UPGRADE, HTL- UPGRADE	RYield reactor	20
10	Gasoline cooler	283	32	GA-FT, FP- UPGRADE, HTL- UPGRADE	HeatX	-
11	Diesel cooler	283	32	GA-FT, FP- UPGRADE, HTL- UPGRADE	HeatX	-
12	Fischer Tropsch Reactor	473	25	GA-FT	RYield reactor	15, 29
13	Steam methane reformer	1123	45	GA-FT, FP- UPGRADE, HTL- UPGRADE	RStoic reactor	28
14	Water-gas shift reactor	573	29	GA-FT, FP- UPGRADE, HTL- UPGRADE	RStoic reactor	13
15	Distillation Column	-	23	GA-FT, FP- UPGRADE, HTL- UPGRADE	RadFrac	-
16	Condenser	344	1.7	GA-FT, FP- UPGRADE, HTL- UPGRADE	-	-

17	Reboiler	590	1.7	GA-FT, FP- UPGRADE, HTL- UPGRADE	-	-
18	Combustor	823	1	GA-COMB, SP- COMB	RGibbs reactor	-

2. SPATIAL ANALYSIS

2.1. Bio-oil upgrading: The bio-oil can either be upgraded on-site or sent to an existing crude refinery, and the crude refinery data are derived from the simulations as well as through the U.S. Energy Information Administration (EIA) website.³² Since bio-oil from pyrolysis is found to contain approximately 35% oxygen and 20% water in our simulations, the quality of the petroleum products could be negatively affected if a crude refinery is to accept too much bio-oil from the pyrolysis biorefinery.³³ To be conservative, it is assumed that each crude refinery can only accept bio-oil up to 1% of its capacity from the biorefineries.³⁴ As mentioned before, the bio-oil produced from slow pyrolysis is not upgraded at a dedicated facility since the amount and the quality of bio-oil from slow pyrolysis is not comparable with the bio-oil produced from fast pyrolysis biorefinery is assumed to be 10 kton/year based on the profitability analysis conducted in certain studies and by considering the capacities of currently operational refineries.³⁵

2.2. Biochar distribution and application: The biochar is to be applied on corn cropland with an application rate derived from the county-wise recommended P application data for corn croplands as described in Section 4.1. Corn is selected owing to its prominent distribution across NYS unlike other crops which allows for minimization of the transportation distance for biochar.³⁶ The corn cropland data are collected from the NASS Cropland Data Layer³⁶ and later aggregated from a pixel resolution of 30 meters to a pixel resolution of 7.5 kilometers. In each scenario, the biochar breakeven price is computed for each pixel and presented on the map of NYS. It is worth mentioning that white pixels on the graphs represent absence of corn cropland and hence inability

to transport and apply biochar on those pixels. The distribution of corn cropland in NYS is consistent with the protected areas and the areas of waterbodies acquired from the New York Protected Areas Database.³⁷ Figure S2 and Table S3 provide details about the distribution of the CAFOs in NYS and the scenarios considered in the spatial analysis.

Figure S2. Map containing distribution, names, and annual poultry litter generation amounts (ton/year) for the CAFOs in NYS, as well as existing crude refineries near the State.

Table S3. Description of scenarios for spatial analysis in terms of number of plants, technology and capacity (SP and FP stand for slow pyrolysis and fast pyrolysis, respectively).

Seconario nomo	No. of	Tachnology	Canadity (Iztan/waan)	
Scenario name	plants	rechnology	Capacity (Ktoll/year)	
SP Scenario 1	1	alow	175.3	
SP Scenario 2 - case 1	2	SIOW	150, 25.3	
SP Scenario 2 - case 2	2	pyrolysis	120, 55.3	

SP Scenario 2 - case 3	2		90, 85.3
SP Scenario 3	10		49.5, 39.4, 26.4, 17.3, 9.9, 8.3, 7.6,
	10		7.1, 5.4, 4.6
FP Scenario 1	1		175.3
FP Scenario 2 - case 1	2		150, 25.3
FP Scenario 2 - case 2	2		120, 55.3
FP Scenario 2 - case 3	2	fast	90, 85.3
ED Secondria 2	o	pyrolysis	49.5, 39.4, 26.4, 17.3, 13.2, 9.97, 9.9,
I'r Stellallo S	0		9.7

2.3. Economic considerations: The annual net revenue is calculated based on the difference between the sum of bio-oil income, biochar income, electricity income and carbon tax income and the sum of capital cost, O&M cost, poultry litter transportation cost and bio-oil transportation cost along with a fixed biochar price of \$100/ton and without consideration of the biochar transportation cost. All the parameters needed for the calculations are assigned values based on the initial techno-economic calculations. Additionally, in order to show the relationship between the choice of biorefinery locations and the biochar transportation, the biochar breakeven price for all scenarios is also calculated. It is worth mentioning that when annual net revenue turns out to be positive, a negative biochar breakeven price is obtained, and vice versa. Capital cost, O&M cost, biochar income, bio-oil income, electricity income and carbon tax income are found to be dependent on the capacity and technology choices for the biorefinery, while the poultry litter, bio-oil and biochar transportation costs are related closely with the location of the biorefineries and corn croplands. The mode of transportation for all products is assumed to be through trucks, and Equation 1 taken from literature³⁸ is used to compute the transportation cost (\$/ton).

Transportation
$$\cos t = 4.1 + 0.08 \cdot \text{Distance}$$
 (1)

Where the distance is calculated in kilometers and '0.08' is the cost in \$/ton associated with the transportation of the material whereas '4.1' is the cost in \$/ton associated with loading and unloading the trucks.

To determine the optimal locations of the biorefineries among the 14 CAFOs, the pairwise route distances between each crude refinery and CAFO, from one CAFO to another, and between

corn cropland pixels and each CAFO are computed and integrated in the calculation of the breakeven price for biochar.

3. ECONOMIC RESULTS

3.1. Equipment costs and NPV calculation: For the four cases with the highest fixed and variable annualized costs (GA-FT, HTL-UPGRADE, FP-UPGRADE and SP-COMB) the equipment costs are also analyzed to help identify the major contributors (Figure 3). Since the magnitude of the equipment costs is large and even a small proportion could make a difference, an attempt is made to include the minor contributors as shown in Figure 3 in the main manuscript and Tables S5-S8. Equipment with similar functions are combined into major groups in each of the pie-charts and the proportion within the group is displayed through three donut charts for each technology (Table S5-S8 contain all the absolute values). Among the major groups, the 'hydroprocessing' fraction consists of hydrotreaters, hydrocrackers and hydrogen production units. The 'separators' include flash vessels, distillation columns, cyclone separators, pressure swing adsorbers (PSA) and other phase separation equipment. The 'others' group within the piecharts consists of an assortment of equipment that could not be associated with any other categories. It consists of equipment such as pumps, compressors, storage tanks, turbines and generators. The NPV results along with their trade-offs with the greenhouse gas emissions are also portrayed in this section (additional discussion in main body of the manuscript). Tables S4-S18 and Figure S3 summarize some of the simulations and economic results.

Table S4. Product phase distribution for the four thermochemical technologies (slow pyrolysis, fast pyrolysis, gasification and hydrothermal liquefaction).¹⁰

	SP	FP	GA	HTL
Gas	31.57	17.14	93.60	22.95
Oil	28.82	56.88	0.00	47.11
Solid	39.61	25.98	6.40	29.93

Equipment nome	Cost (\$)	Contribution
Equipment name	Cost (\$)	(%)
Bio-oil pump	617,230	0.96
Feed preheater	69,455	0.11
Gasoline cooler	70,400	0.11
Diesel cooler	85,150	0.13
Pressure swing adsorber 1	111,535	0.17
Pressure swing adsorber 2	111,535	0.17
Demister 1	117,315	0.18
Gas-liquid separator	130,510	0.20
Demister 2	130,510	0.20
Dry flash	137,810	0.21
LP Flash	146,270	0.23
Pressure swing adsorber 3	173,830	0.27
Quencher	192,505	0.30
Pump	206,305	0.32
Cyclone separator	228,942	0.35
Demister 3	253,385	0.39
HP-flash	264,785	0.41
Boiler	300,091	0.46
Gasoline storage tank	309,640	0.48
Sulfur removal	310,215	0.48
WGS reactor	425,224	0.66
Condenser	536,000	0.83
Diesel storage tank	551,478	0.85
wastewater storage	570,159	0.88
Distillation Column 1	700,005	1.08
Distillation Column 2	853,490	1.32
Generator	960,450	1.49
Turbine	1,688,380	2.61
Reformer	2,499,887	3.87
Compressor 2	2,765,390	4.28
Compressor 1	2,898,910	4.49
Compressor 3	3,350,415	5.19
Hydrotreater	7,286,741	11.28
Dryer	9,550,244	14.79
Hydrocracker	12,849,618	19.90
Pyrolysis reactor	13,123,210	20.32
Total	64,577,019	100.00

Table S5. Equipment price distribution for fast pyrolysis technology³⁹

Equipment name	Cost (\$)	Contribution
		(%)
Bio-oil pump	693,930	1.33
Pump	208,170	0.40
Compressor 1	64,740	0.12
Preheater	66,850	0.13
Compressor 2	67,660	0.13
Pressure swing adsorber 1	107,450	0.21
Demister 1	107,450	0.21
Pressure swing adsorber 2	119,995	0.23
LP-Flash	122,400	0.23
Gas-liquid separator	125,720	0.24
Demister 2	125,720	0.24
Gasoline storage tank	132,642	0.25
Dry flash tank	132,655	0.25
Pressure swing adsorber 3	167,030	0.32
Quencher	185,210	0.36
WGS reactor	193,040	0.37
HP-Flash	210,905	0.40
Diesel storage tank	224,026	0.43
Demister 3	244,255	0.47
Column	254,665	0.49
Reformer	358,034	0.69
Boiler	375,965	0.72
Distillation Column 1	496,270	0.95
wastewater storage	552,473	1.06
Distillation column 2	555,360	1.06
Condenser	1,025,650	1.97
Compressor 3	2,618,575	5.02
Hydrotreater	3,007,832	5.77
Compressor 4	3,518,090	6.74
Compressor 5	3,942,005	7.56
Hydrocracker	4,512,086	8.65
Turbine	4,974,258	9.54
Dryer	9,550,244	18.31
Pyrolysis reactor	13,123,210	25.16
Total	41,164,565	100.00

 Table S6. Equipment price distribution for slow pyrolysis technology

Equipment name	Cost (\$)	Contribution (%)
Condenser	391,690	0.61
Sulfur separator	69,995	0.11
Distillation column 2	971,650	1.51
Dry flash tank	137,810	0.21
Compressor 1	2,132,910	3.32
F-T water knock out	117,090	0.18
Steam generator	272,225	0.42
F-T liquid cooler	1,774,550	2.76
AIR-preheater	46,577	0.07
Column-1	955,645	1.49
Feed-preheater	44,857	0.07
NH3-Scrubber	139,380	0.22
Gasoline cooler	69,995	0.11
Compressor-4	2,844,780	4.43
F-T liquid absorber	117,090	0.18
1st Sulfur Separator	105,535	0.16
Syngas-cooler	581,440	0.91
Compressor-2	2,091,465	3.26
SC water knock out	125,890	0.20
Compressor-air	4,321,445	6.73
Wax pump	185,625	0.29
CO2-remover	117,660	0.18
Compressor-3	1,472,920	2.29
PSA	126,030	0.20
Lock hopper	144,139	0.22
Turbine	1,394,000	2.17
Diesel-cooler	86,165	0.13
Cyclone	85,399	0.13
Compressor-5	2,708,995	4.22
Gasoline storage tank	456,759	0.71
Diesel storage tank	515,864	0.80
wastewater storage	420,091	0.65
Gasifier	8,884,322	13.84
FT reactor	5,981,756	9.32
Dryer	9,548,588	14.88
Boiler	375,965	0.59
Hydrocracker	7,585,565	11.82
Reformer	1,911,564	2.98
Acid gas remover	2,009,549	3.13

Table S7. Equipment price distribution for gasification technology

Claus Converter	1,907,260	2.97	
Hydrolysis reactor	956,988	1.49	
Total	64,187,222	100.00	
Total	64,187,222	100.00	•

Equipment name	Cost (\$)	Contribution
Preheater 1	280.615	0.39
Feed heater	620.890	0.87
Compressor 1	2,489,825	3.50
Pressure swing adsorber 1	131.590	0.18
Preheater 2	141,730	0.20
Pressure swing adsorber 2	126,420	0.18
Flash	131,590	0.18
HP-Flash	146,270	0.21
Hydrocracker	1,340,205	1.88
Turbine	7,304,560	10.26
Condenser	280,705	0.39
Column	982,780	1.38
Adsorption	175,130	0.25
Heat exchanger	117,610	0.17
Distillation column	1,245,415	1.75
Compressor 3	2,952,445	4.15
Distillation column	69,815	0.10
3-phase-separator	190,315	0.27
Distillation Column	73,050	0.10
NH3 scrubber	148,860	0.21
F-p-ex	64,855	0.09
Hc-2-fl	131,590	0.18
Cooler 1	520,905	0.73
Sulfur treatment	190,315	0.27
Cooler 2	71,260	0.10
LP-Flash	146,270	0.21
Feed pump	1,883,210	2.64
Compressor 4	2,283,120	3.21
Preheater 3	141,730	0.20
Liquid gas separator	124,415	0.17
Pressure swing adsorber 3	126,030	0.18
Cooler 3	105,945	0.15
Gasoline storage tank	252,410	0.35
Diesel storage tank	579,567	0.81
Wastewater storage	105,668	0.15
Reformer	2,962,192	4.16
HTL reactor	17,287,229	24.27
Hydrotreater	5,481,468	7.70
Hydrocracker	8,364,620	11.74

Table S8. Equipment price distribution for hydrothermal liquefaction technology

Boiler	443,408	0.62
AD reactor	11,011,074	15.46
Total	71,227,102	100.00

Sr. No.	Utility name	Price	Units	Reference No.
1	Electricity	5.4	cents/kWh	40
2	Process Steam	8.2	\$/ton	15
3	Cooling water	0.31	\$/ton	15
4	Natural gas	7.42	\$/thousand cubic feet (\$/MCF)	41
5	Wastewater disposal	3.3	\$/hundred cubic feet	15

Table S9. Price of the important utilities.^{15, 40-41}

Table S10. Product market prices used for the revenue calculations.^{38, 42-45}

Product	Price	Units
oil	0.33	\$M/kt
diesel	1.03	\$M/kt
gasoline	0.99	\$M/kt
biochar	0.10	\$M/kt
electricity	8.00	cents/kWh
carbon tax	0.10	\$M/kt
biochar	0.20	\$M/ton

Table S11. Revenue generation distribution for the nine cases considered.

Case	Oil	Diesel	Gasoline	Biochar	Electricity	Carbon	Total
				(\$MM))		
GA-COMB					13.46		13.46
FP-SELL	22.54			3.12	0.98	0.94	27.58
HTL-SELL	11.56			2.36			13.92
SP-CHAR	11.03			9.19	2.79	1.83	24.84
GA-CHP							26.91
SP-COMB	11.03				4.28		15.31
FP-UPGRADE		31.11	10.82	1.56	0.49	0.47	44.45
HTL-UPGRADE		25.46	7.33	2.36			35.15
GA-FT		24.68	17.48				42.17

FP-SELL			
year			
0	-55,109,214	-55,109,214	-55,109,214
1	11,627,132	11,073,459	-44,035,755
2	11,627,132	10,546,152	-33,489,603
3	11,627,132	10,043,954	-23,445,649
4	11,627,132	9,565,670	-13,879,979
5	11,627,132	9,110,162	-4,769,817
6	11,627,132	8,676,345	3,906,528
7	11,627,132	8,263,186	12,169,714
8	11,627,132	7,869,701	20,039,415
9	11,627,132	7,494,953	27,534,368
10	11,627,132	7,138,051	34,672,418
11	11,627,132	6,798,143	41,470,562
12	11,627,132	6,474,422	47,944,984
13	11,627,132	6,166,116	54,111,101
14	11,627,132	5,872,492	59,983,592
15	11,627,132	5,592,849	65,576,442
16	11,627,132	5,326,523	70,902,965
17	11,627,132	5,072,879	75,975,844
18	11,627,132	4,831,314	80,807,158
19	11,627,132	4,601,251	85,408,409
20	11,627,132	4,382,144	89,790,553
			89.79

 Table S12. NPV calculation for FP-SELL case.

SP-CHAR			
year			
0	-38,871,805	-38,871,805	-38,871,805
1	16,785,210	15,985,914	-22,885,891
2	16,785,210	15,224,680	-7,661,211
3	16,785,210	14,499,695	6,838,485
4	16,785,210	13,809,234	20,647,718
5	16,785,210	13,151,651	33,799,370
6	16,785,210	12,525,382	46,324,752
7	16,785,210	11,928,935	58,253,687
8	16,785,210	11,360,891	69,614,578
9	16,785,210	10,819,896	80,434,474
10	16,785,210	10,304,663	90,739,137
11	16,785,210	9,813,965	100,553,101
12	16,785,210	9,346,633	109,899,734
13	16,785,210	8,901,555	118,801,289
14	16,785,210	8,477,672	127,278,961
15	16,785,210	8,073,973	135,352,934
16	16,785,210	7,689,498	143,042,432
17	16,785,210	7,323,331	150,365,764
18	16,785,210	6,974,601	157,340,365
19	16,785,210	6,642,478	163,982,843
20	16,785,210	6,326,169	170,309,012
			170.31

 Table S13. NPV calculation for SP-CHAR case.

SP-COMB			
year			
0	-41,258,986	-41,258,986	-41,258,986
1	4,121,929	3,925,647	-37,333,339
2	4,121,929	3,738,711	-33,594,627
3	4,121,929	3,560,678	-30,033,950
4	4,121,929	3,391,121	-26,642,828
5	4,121,929	3,229,639	-23,413,189
6	4,121,929	3,075,847	-20,337,342
7	4,121,929	2,929,378	-17,407,963
8	4,121,929	2,789,884	-14,618,079
9	4,121,929	2,657,032	-11,961,047
10	4,121,929	2,530,507	-9,430,540
11	4,121,929	2,410,007	-7,020,533
12	4,121,929	2,295,244	-4,725,289
13	4,121,929	2,185,947	-2,539,342
14	4,121,929	2,081,854	-457,487
15	4,121,929	1,982,718	1,525,231
16	4,121,929	1,888,303	3,413,535
17	4,121,929	1,798,384	5,211,919
18	4,121,929	1,712,747	6,924,666
19	4,121,929	1,631,187	8,555,853
20	4,121,929	1,553,512	10,109,365
			10.11

 Table S14. NPV calculation for SP-COMB case.

S. No	Acronym, Common	Chemical	GWP 100-year (kg CO ₂ -
SI. INO.	Name	Formula	Eq)
1	Carbon dioxide	CO ₂	1
2	Methane	CH4	28
3	Nitrous oxide	N_2O	265
4	Nitrous oxides	NOx	-8.2
5	Carbon monoxide	CO	1.8
6	Sulphur dioxide	SO_2	-38.4

Table S15. GWP 100-year factors of some of the chemicals involved in the simulations. The values are directly obtained from the IPCC report on Climate Change in 2013⁴⁶

Table S16. Net present value (NPV) and greenhouse gas (GHG) inventory results for the nine considered cases.

Case	GHG (kg CO ₂ -eq)	NPV (\$MM)
GA-FT	339.00	234.33
GA-CHP	378.35	72.15
GA-COMB	400.00	25.02
SP-COMB	270.00	10.00
SP-CHAR	279.00	170.00
FP-SELL	217.00	89.79
FP-UPGRADE	361.50	314.49
HTL-SELL	339.40	28.40
HTL-UPGRADE	494.50	196.27

Figure S3. Trade-off between economic and environmental performance illustrated through the plot of NPVs (\$MM) against greenhouse gas emissions (GHG) for the nine cases.

Sr. No.	Syngas	Energy	Electricity	Heat
	(kg/hr)	(MW)	(MW)	(MJ/hr)
1	1,234.66	3.92	1.18	7,053.28
2	811.00	2.57	0.77	4,633.05
3	1,843.45	5.85	1.76	10,531.14
4	251.90	0.80	0.24	1,439.04
5	214.61	0.68	0.20	1,226.02
6	463.19	1.47	0.44	2,646.08
7	37.66	0.12	0.04	215.16
8	121.55	0.39	0.12	694.40
9	195.19	0.62	0.19	1,115.10

Table S17. Syngas production potential through slow pyrolysis for the 14 CAFOs and the corresponding power that can be generated.¹⁶

10	263.60	0.84	0.25	1,505.86
11	66.11	0.21	0.06	377.67
12	387.58	1.23	0.37	2,214.16
13	60.12	0.19	0.06	343.46
14	2,254.19	7.15	2.15	12,877.60
Min gas	1,050.28		1.00	6,000.00

Table S18. Syngas production potential through fast pyrolysis for the 14 CAFOs and the corresponding power that can be generated.⁹

Sr. No.	Syngas	Energy	Electricity	Heat
	(kg/hr)	(MW)	(MW)	(MJ/hr)
1	878.81	1.75	0.52	3,141.57
2	577.26	1.15	0.34	2,063.59
3	1,312.14	2.61	0.78	4,690.63
4	179.30	0.36	0.11	640.96
5	152.76	0.30	0.09	546.08
6	329.69	0.65	0.20	1,178.58
7	26.81	0.05	0.02	95.83
8	86.52	0.17	0.05	309.29
9	138.94	0.28	0.08	496.67
10	187.62	0.37	0.11	670.72
11	47.06	0.09	0.03	168.22
12	275.88	0.55	0.16	986.20
13	42.79	0.08	0.03	152.98
14	1,604.50	3.19	0.96	5,735.76
Min gas	1,678.42		1.00	6,000.00

3.2. Sensitivity analysis results. Through the sensitivity analysis for both the slow pyrolysis and fast pyrolysis cases, parameters which would have a major impact on the NPV values for each case are identified (Figure S4). For the fast pyrolysis case (FP-UPGRADE), the plant capacity is the dominating factor with a negative NPV of -\$32MM (decrease of 110%) on moving from the existing capacity (175 kton/year) to the lowest capacity (25 kton/year, as determined in the spatial analysis for NYS later). This could be explained by the fact that the building of an upgrading

facility dedicated solely to process bio-oil would be a very expensive proposition if the scale is not large enough. Both bio-oil yield (ranging from -49.0% to +38.2%) and diesel price (-47.4% to +30.8%) are other influential parameters, thus further establishing the importance of optimizing the utilization and processing steps of bio-oil for fast pyrolysis. Other parameters such as discount rate, equipment cost and carbon credits have a smaller impact on the NPV, which is positive even for the lower bounds of all parameter values except for plant capacity.

For slow pyrolysis on the other hand, the biochar price (with a base value of \$100/ton) is found to be capable of dictating the overall economic performance of the plant, with a meagre NPV of \$12MM at \$0/ton biochar, and a substantial NPV of \$298MM at \$500/ton biochar. Towards the higher end of the biochar price spectrum, it is found that the slow pyrolysis system could compete with the fast pyrolysis system in terms of NPV and even surpass it if in combination with a high carbon credit value (+73% for \$500/t CO₂-eq). Additionally, there are other environmental benefits that slow pyrolysis possesses which have not been monetized or incentivized yet. Thus, the biochar and carbon credit prices in the future could play a huge role in dictating which of the two technologies would be deployed at a larger scale.

Figure S4. Sensitivity analysis results for the FP-UPGRADE (above) and SP-CHAR (below) cases. The text on the left refers to the parameters being varied, and their base values are placed in parenthesis. The labels at the end of each bar represent the extreme values of the parameter considered. The single number near the central axis for both the cases refers to the base value of the NPV (\$315MM for the fast pyrolysis case, and \$170MM for the slow pyrolysis case).

4. SPATIAL ANALYSIS RESULTS

Figure S5. Spatial distribution of phosphorus in New York State (NYS).

🛛 Bio-oil income 🔹 Biochar income 🔹 Electricity income 🗰 Carbon fax income 🔹 Capital cost 🔤 OM cost 🔤 Bio-oil transportation cost 🔤 Poultry litter transportation cost 🗆 net revenue (excluding biochar transportation cost)

Figure S6. (a) Annualized economic breakdown of all scenarios for slow and fast pyrolysis in NYS (b) Annualized economic breakdown of all cases of Scenario 2 for slow and fast pyrolysis in NYS.

4.1. Spatial distribution of soil phosphorus contents does not constrain application: Since most of the P present in the feedstock is assumed to be transferred into the biochar during the pyrolysis processes, due consideration must be given to the changes in the soil P contents to

the pyrolysis processes, due consideration must be given to the changes in the soil P contents to avoid overfertilization and consequent nutrient run-off after biochar application. The best available data for the spatial distribution of P in NYS is based on the county level data instead of pixel level or farm level (Figure S5). Even with that approximation, data for certain counties such as Warren and Hamilton cannot be obtained. Thus, we combined the county-wise recommended P application data for soils on which corn is growing with the pixel $(1500 \times 1500 \text{ meter resolution})$ level corn cropland data in NYS. Then, we identified and plotted the corn cropland pixels where it is recommended to apply P (i.e. for those pixels where neither existence of corn cropland = 0 nor recommended P application value = 0) as shown in Figure S5. This provides a profile of biochar applicability on corn croplands in NYS. We then calculate the transportation of biochar based on these assumptions and then create Figures 4-6. Furthermore, the maximum possible P that can be found in the biochar from the entire state's CAFO poultry litter is 2.1 kton/year which is much lower than the recommended 5.7 kton/year for NYS. Hence, when looking at the entire state as a whole, over-application of P can be avoided with appropriate transportation within the state.

5. ADDITIONAL INFORMATION AND DATA

Table S19. Details and poultry numbers in each CAFO for NYS.^{36, 47}

Facility Name	County	Broilers	Layers	Manure (MT/yr)	Latitude	Longitude
C.A.C.L. Properties Llc.	Clinton	0.00	40,000.00	1,285.00	43.00	-78.58
Giroux'S Poultry Farm	Clinton	0.00	1,500,000.00	48,180.00	42.02	-77.71
Kreher'S Farm Fresh Eggs, Llc	Erie	251,531.00	640,070.00	26,389.00	43.24	-76.80
Sunrise Farms Inc	Greene	0.00	44,000.00	1,413.00	43.03	-76.39
Hudson Egg Farms, Llc	Onondaga	0.00	167,616.00	5,384.00	42.89	-76.04
Smith Quality Eggs, Llc.	Onondaga	51,000.00	106,000.00	4,587.00	41.76	-74.94
Ace Farm	Orange	56,000.00	135,000.00	5,634.00	41.75	-74.77
Tomas Poultry Farm Of Schuylevil	Saratoga	69,206.00	207,957.00	8,284.00	41.76	-74.74
Whitesville Farms, Llc	Steuben	150,595.00	431,004.00	17,334.00	41.71	-74.76
Harold Brey & Sons Inc	Sullivan	180,000.00	0.00	4,172.00	41.33	-74.15
Labelle Farm	Sullivan	80,000.00	240,000.00	9,900.00	42.22	-73.97
Hvfg, Llc	Sullivan	0.00	0.00	2,598.00	43.16	-73.61
Bella Poultry Inc.	Sullivan	0.00	0.00	805.00	44.89	-73.44
Wayne County Eggs, Llc	Wayne	213,357.00	1,072,724.00	39,401.00	44.86	-73.43

County	Layers	Broilers	Turkeys	Latitude	Longitude
Albany	3,557.00	406.00	D	42.60	-73.97
Allegany	18,772.00	344.00	98.00	42.26	-78.03
Bronx	NA	NA	NA	40.85	-73.85
Broome	3,025.00	296.00	126.00	42.16	-75.82
Cattaraugus	3,539.00	1,058.00	153.00	42.25	-78.68
Cayuga	34,492.00	462.00	118.00	43.01	-76.57
Chautauqua	5,887.00	2,725.00	665.00	42.30	-79.41
Chemung	1,114.00	D	256.00	42.14	-76.76
Chenango	5,453.00	D	424.00	42.49	-75.61
Clinton	D	1,040.00	48.00	44.75	-73.68
Columbia	9,359.00	2,558.00	393.00	42.25	-73.63
Cortland	1,710.00	D	D	42.60	-76.07
Delaware	5,905.00	1,254.00	562.00	42.20	-74.97
Dutchess	4,542.00	14,301.00	57.00	41.77	-73.74
Erie	D	11,660.00	D	42.76	-78.78
Essex	6,317.00	3,814.00	583.00	44.12	-73.77
Franklin	84,234.00	636.00	78.00	44.59	-74.30
Fulton	5,228.00	126.00	21.00	43.11	-74.42
Genesee	D	466.00	258.00	43.00	-78.19
Greene	D	206.00	83.00	42.28	-74.12
Hamilton	NA	NA	NA	43.66	-74.50
Herkimer	10,079.00	4,372.00	77.00	43.42	-74.96
Jefferson	D	870.00	149.00	44.00	-76.05
Kings	28.00	NA	NA	40.63	-73.95
Lewis	2,772.00	360.00	46.00	43.78	-75.45
Livingston	2,577.00	282.00	39.00	42.73	-77.78
Madison	2,902.00	1,288.00	332.00	42.91	-75.67
Monroe	1,902.00	723.00	189.00	43.31	-77.68
Montgomery	5,034.00	815.00	252.00	42.90	-74.44
Nassau	60.00	NA	NA	40.73	-73.59
New York	36.00	NA	NA	40.77	-73.97
Niagara	4,067.00	1,881.00	280.00	43.34	-78.77
Oneida	5,744.00	1,142.00	131.00	43.24	-75.44
Onondaga	703,150.00	751.00	D	43.01	-76.19
Ontario	40,723.00	643.00	116.00	42.85	-77.30
Orange	D	619.00	87.00	41.40	-74.31
Orleans	2,832.00	310.00	D	43.38	-78.23

Table S20. Distribution of poultry numbers in NYS based on counties.⁴⁷

Oswego	2,607.00	832.00	274.00	43.46	-76.21
Otsego	8,161.00	1,005.00	122.00	42.63	-75.03
Putnam	899.00	133.00	12.00	41.43	-73.75
Queens	550.00	NA	NA	40.66	-73.84
Rensselaer	6,252.00	1,620.00	354.00	42.71	-73.51
Richmond	NA	NA	NA	40.56	-74.14
Rockland	359.00	NA	NA	41.15	-74.02
St Lawrence	7,038.00	2,874.00	726.00	44.50	-75.07
Saratoga	D	697.00	243.00	43.11	-73.86
Schenectady	665.00	100.00	D	42.82	-74.06
Schoharie	5,965.00	2,080.00	247.00	42.59	-74.44
Schuyler	15,219.00	338.00	D	42.39	-76.88
Seneca	68,095.00	D	1,259.00	42.78	-76.82
Steuben	D	1,034.00	213.00	42.27	-77.38
Suffolk	8,065.00	D	5,190.00	40.94	-72.69
Sullivan	D	D	D	41.72	-74.77
Tioga	2,317.00	405.00	211.00	42.17	-76.31
Tompkins	2,724.00	305.00	59.00	42.45	-76.47
Ulster	4,855.00	1,395.00	349.00	41.89	-74.26
Warren	782.00	70.00	D	43.56	-73.85
Washington	7,395.00	D	1,146.00	43.31	-73.43
Wayne	D	810.00	57.00	43.33	-77.05
Westchester	4,134.00	440.00	D	41.15	-73.75
Wyoming	2,485.00	267.00	125.00	42.70	-78.22
Yates	82,637.00	1,371.00	137.00	42.63	-77.11

Parameter	Value	Unit
discount rate	0.050	
project lifetime	20.000	years
ratio of carbon content of biochar for SP	0.397	
ratio of carbon content of biochar for FP	0.300	
ratio of biochar production for SP	0.262	
ratio of biochar production for FP	0.178	
ratio of bio-crude production for SP	0.191	
ratio of bio-crude production for FP	0.390	
ratio of gas production for SP	0.209	
ratio of gas production for FP	0.118	
ratio of diesel production from FP oil	0.440	
ratio of gasoline production from FP oil	0.160	
OM cost for SP with CHP (175.2 kt/yr)	21.336	
OM cost for SP with combustion (175.2 kt/yr)	21.200	
OM cost for FP with CHP and upgrading (175.2 kt/yr)	29.692	
OM cost for FP with CHP and no upgrading (175.2 kt/yr)	23.107	
OM cost for FP with combustion and upgrading (175.2 kt/yr)	29.623	
OM cost for FP with combustion and no upgrading (175.2 kt/yr)	23.039	
CC cost for SP with CHP (175.2 kt/yr)	63.793	
CC cost for SP with combustion (175.2 kt/yr)	61.127	
CC cost for FP with CHP and upgrading (175.2 kt/yr)	93.182	
CC cost for FP with CHP and no upgrading (175.2 kt/yr)	59.195	
CC cost for FP with combustion and upgrading (175.2 kt/yr)	91.849	
CC cost for FP with combustion and no upgrading (175.2 kt/yr)	57.862	
SP biochar price	0.300	\$ M/kt
FP biochar price	0.300	\$ M/kt
bio-crude price for both SP and FP (derived from \$45/barrel and 7.33 barrel/t bio- crude)	0.330	\$ M/kt
diesel price (derived from 325.9 cent/gal and 6.943 lb/gal diesel)	1.035	\$ M/kt
gasoline price (derived from 279.0 cent/gal and 2.79 lb/gal diesel)	0.989	\$ M/kt
the maximum ratio that can be accepted to each refinery	0.010	
Carbon Tax	100.000	\$/tCO2eq
Min gas flow for CHP - SP (for 500 MWe)	4.600	kton/yr
Min gas flow for CHP - FP (for 250 MWe)	3.676	kton/yr
CHP efficiency	0.800	
CHP electricity efficiency	0.300	
CHP heat efficiency	0.500	

Table S21. Parameters and their values, units and meaning for the spatial analysis.

Table S22. List of considered existing refinery equipment that is capable of processing certain amounts of produced bio-oil.³⁴ Total operable capacity was considered while calculating the fraction of bio-oil that could potentially be accepted in each refinery. Ultimately, only the last two refineries listed in the table were considered in the analysis.

Company_name	Site	Product	Quantity (barrels/stream day)
American refining group inc	Bradford	Asphalt & road oil	65
American refining group inc	Bradford	Asphalt & road oil	65
American refining group inc	Bradford	Cat reforming: high pressure	1800
American refining group inc	Bradford	Cat reforming: high pressure	2200
American refining group inc	Bradford	Cat reforming: high pressure	2200
American refining group inc	Bradford	Desulfurization, naphtha/reformer feed	3600
American refining group inc	Bradford	Desulfurization, naphtha/reformer feed	3600
American refining group inc	Bradford	Lubricants	2945
American refining group inc	Bradford	Lubricants	2945
American refining group inc	Bradford	Operating capacity	11000
American refining group inc	Bradford	Operating capacity	11800
American refining group inc	Bradford	Total oper cap (projected, next year)	11800
American refining group inc	Bradford	Total operable capacity	11000
American refining group inc	Bradford	Total operable capacity	11800
Monroe energy llc	Trainer	Alkylates	12000
Monroe energy llc	Trainer	Alkylates	12000
Monroe energy llc	Trainer	Cat cracking: fresh feed	51500
Monroe energy llc	Trainer	Cat cracking: fresh feed	53000
Monroe energy llc	Trainer	Cat cracking: fresh feed	53000
Monroe energy llc	Trainer	Cat hydrocracking, distillate	21500
Monroe energy llc	Trainer	Cat hydrocracking, distillate	23000
Monroe energy llc	Trainer	Cat hydrocracking, distillate	23000
Monroe energy llc	Trainer	Cat reforming: low pressure	45000
Monroe energy llc	Trainer	Cat reforming: low pressure	50000
Monroe energy llc	Trainer	Cat reforming: low pressure	50000
Monroe energy llc	Trainer	Desulfurization, diesel fuel	53300
Monroe energy llc	Trainer	Desulfurization, diesel fuel	53300
Monroe energy llc	Trainer	Desulfurization, gasoline	34000
Monroe energy llc	Trainer	Desulfurization, gasoline	34000
Monroe energy llc	Trainer	Desulfurization, kerosene and jet	23300
Monroe energy llc	Trainer	Desulfurization, kerosene and jet	23300
Monroe energy llc	Trainer	Desulfurization, naphtha/reformer feed	80000
Monroe energy llc	Trainer	Desulfurization, naphtha/reformer feed	80000
Monroe energy llc	Trainer	Operating capacity	190000
Monroe energy llc	Trainer	Operating capacity	208000

Monroe energy llc	Trainer	Sulfur (short tons/day)	90
Monroe energy llc	Trainer	Sulfur (short tons/day)	90
Monroe energy llc	Trainer	Total oper cap (projected, next year)	208000
Monroe energy llc	Trainer	Total operable capacity	190000
Monroe energy llc	Trainer	Total operable capacity	208000
Monroe energy llc	Trainer	Vacuum distillation	73000
Monroe energy llc	Trainer	Vacuum distillation	73000
Paulsboro refining co llc	Paulsboro	Alkylates	11200
Paulsboro refining co llc	Paulsboro	Alkylates	11200
Paulsboro refining co llc	Paulsboro	Asphalt & road oil	21000
Paulsboro refining co llc	Paulsboro	Asphalt & road oil	21000
Paulsboro refining co llc	Paulsboro	Cat cracking: fresh feed	54000
Paulsboro refining co llc	Paulsboro	Cat cracking: fresh feed	55000
Paulsboro refining co llc	Paulsboro	Cat cracking: fresh feed	55000
Paulsboro refining co llc	Paulsboro	Cat reforming: low pressure	28500
Paulsboro refining co llc	Paulsboro	Cat reforming: low pressure	32000
Paulsboro refining co llc	Paulsboro	Cat reforming: low pressure	32000
Paulsboro refining co llc	Paulsboro	Desulfurization, diesel fuel	46000
Paulsboro refining co llc	Paulsboro	Desulfurization, diesel fuel	46000
Paulsboro refining co llc	Paulsboro	Desulfurization, gasoline	37000
Paulsboro refining co llc	Paulsboro	Desulfurization, gasoline	37000
Paulsboro refining co llc	Paulsboro	Desulfurization, kerosene and jet	29100
Paulsboro refining co llc	Paulsboro	Desulfurization, kerosene and jet	29100
Paulsboro refining co llc	Paulsboro	Desulfurization, naphtha/reformer feed	32000
Paulsboro refining co llc	Paulsboro	Desulfurization, naphtha/reformer feed	32000
Paulsboro refining co llc	Paulsboro	Hydrogen (mmcfd)	9
Paulsboro refining co llc	Paulsboro	Hydrogen (mmcfd)	9
Paulsboro refining co llc	Paulsboro	Lubricants	12000
Paulsboro refining co llc	Paulsboro	Lubricants	12000
Paulsboro refining co llc	Paulsboro	Operating capacity	160000
Paulsboro refining co llc	Paulsboro	Operating capacity	166000
Paulsboro refining co llc	Paulsboro	Petcoke,market	7500
Paulsboro refining co llc	Paulsboro	Petcoke,market	7500
Paulsboro refining co llc	Paulsboro	Sulfur (short tons/day)	280
Paulsboro refining co llc	Paulsboro	Sulfur (short tons/day)	350
Paulsboro refining co llc	Paulsboro	Therm cracking, delayed coking	26500
Paulsboro refining co llc	Paulsboro	Therm cracking, delayed coking	27000
Paulsboro refining co llc	Paulsboro	Therm cracking, delayed coking	27000
Paulsboro refining co llc	Paulsboro	Total oper cap (projected, next year)	166000
Paulsboro refining co llc	Paulsboro	Total operable capacity	160000
Paulsboro refining co llc	Paulsboro	Total operable capacity	166000
Paulsboro refining co llc	Paulsboro	Vacuum distillation	90000
Paulsboro refining co llc	Paulsboro	Vacuum distillation	90000

Philadelphia energy solutions	Philadelphia	Alkylates	26500
Philadelphia energy solutions	Philadelphia	Alkylates	26500
Philadelphia energy solutions	Philadelphia	Aromatics	4920
Philadelphia energy solutions	Philadelphia	Aromatics	4920
Philadelphia energy solutions	Philadelphia	Cat cracking: fresh feed	127300
Philadelphia energy solutions	Philadelphia	Cat cracking: fresh feed	137500
Philadelphia energy solutions	Philadelphia	Cat cracking: fresh feed	137500
Philadelphia energy solutions	Philadelphia	Cat reforming: high pressure	77400
Philadelphia energy solutions	Philadelphia	Cat reforming: high pressure	86000
Philadelphia energy solutions	Philadelphia	Cat reforming: high pressure	86000
Philadelphia energy solutions	Philadelphia	Desulfurization, gasoline	65000
Philadelphia energy solutions	Philadelphia	Desulfurization, gasoline	65000
Philadelphia energy solutions	Philadelphia	Desulfurization, naphtha/reformer feed	78000
Philadelphia energy solutions	Philadelphia	Desulfurization, naphtha/reformer feed	78000
Philadelphia energy solutions	Philadelphia	Desulfurization, other distillate	157000
Philadelphia energy solutions	Philadelphia	Desulfurization, other distillate	157000
Philadelphia energy solutions	Philadelphia	Isomerization (isobutane)	3800
Philadelphia energy solutions	Philadelphia	Isomerization (isobutane)	3800
Philadelphia energy solutions	Philadelphia	Operating capacity	335000
Philadelphia energy solutions	Philadelphia	Operating capacity	350000
Philadelphia energy solutions	Philadelphia	Sulfur (short tons/day)	76
Philadelphia energy solutions	Philadelphia	Sulfur (short tons/day)	76
Philadelphia energy solutions	Philadelphia	Total oper cap (projected, next year)	350000
Philadelphia energy solutions	Philadelphia	Total operable capacity	335000
Philadelphia energy solutions	Philadelphia	Total operable capacity	350000
Philadelphia energy solutions	Philadelphia	Vacuum distillation	163200
Philadelphia energy solutions	Philadelphia	Vacuum distillation	163200
Phillips 66 company	Linden	Alkylates	18800
Phillips 66 company	Linden	Alkylates	18800
Phillips 66 company	Linden	Cat cracking: fresh feed	128000
Phillips 66 company	Linden	Cat cracking: fresh feed	145000
Phillips 66 company	Linden	Cat cracking: fresh feed	145000
Phillips 66 company	Linden	Cat reforming: low pressure	32300
Phillips 66 company	Linden	Cat reforming: low pressure	35900
Phillips 66 company	Linden	Cat reforming: low pressure	35900
Phillips 66 company	Linden	Desulfurization, diesel fuel	108000
Phillips 66 company	Linden	Desulfurization, diesel fuel	108000
Phillips 66 company	Linden	Desulfurization, naphtha/reformer feed	65500
Phillips 66 company	Linden	Desulfurization, naphtha/reformer feed	65500
Phillips 66 company	Linden	Desulfurization, other distillate	17500
Phillips 66 company	Linden	Desulfurization, other distillate	17500
Phillips 66 company	Linden	Fuels solvent deasphalting	22000
Phillips 66 company	Linden	Fuels solvent deasphalting	22000

Phillips 66 company	Linden	Hydrogen (mmcfd)	22
Phillips 66 company	Linden	Hydrogen (mmcfd)	22
Phillips 66 company	Linden	Isomerization (isobutane)	4000
Phillips 66 company	Linden	Isomerization (isobutane)	4000
Phillips 66 company	Linden	Operating capacity	258500
Phillips 66 company	Linden	Operating capacity	272100
Phillips 66 company	Linden	Total oper cap (projected, next year)	272100
Phillips 66 company	Linden	Total operable capacity	258500
Phillips 66 company	Linden	Total operable capacity	272100
Phillips 66 company	Linden	Vacuum distillation	75000
Phillips 66 company	Linden	Vacuum distillation	75000
United refining co	Warren	Alkylates	4500
United refining co	Warren	Alkylates	4500
United refining co	Warren	Asphalt & road oil	22000
United refining co	Warren	Asphalt & road oil	22000
United refining co	Warren	Cat cracking: fresh feed	24000
United refining co	Warren	Cat cracking: fresh feed	25000
United refining co	Warren	Cat cracking: fresh feed	25000
United refining co	Warren	Cat cracking: recycled feed	1000
United refining co	Warren	Cat cracking: recycled feed	1000
United refining co	Warren	Cat reforming: high pressure	13000
United refining co	Warren	Cat reforming: high pressure	14000
United refining co	Warren	Cat reforming: high pressure	14000
United refining co	Warren	Desulfurization, diesel fuel	17000
United refining co	Warren	Desulfurization, diesel fuel	17000
United refining co	Warren	Desulfurization, gasoline	5000
United refining co	Warren	Desulfurization, gasoline	5000
United refining co	Warren	Desulfurization, kerosene and jet	5000
United refining co	Warren	Desulfurization, kerosene and jet	5000
United refining co	Warren	Desulfurization, naphtha/reformer feed	26000
United refining co	Warren	Desulfurization, naphtha/reformer feed	26000
United refining co	Warren	Hydrogen (mmcfd)	10
United refining co	Warren	Hydrogen (mmcfd)	10
United refining co	Warren	Isomerization (isopentane/isohexane)	8500
United refining co	Warren	Isomerization (isopentane/isohexane)	8500
United refining co	Warren	Operating capacity	65000
United refining co	Warren	Operating capacity	70000
United refining co	Warren	Sulfur (short tons/day)	67
United refining co	Warren	Sulfur (short tons/day)	67
United refining co	Warren	Total oper cap (projected, next year)	70000
United refining co	Warren	Total operable capacity	65000
United refining co	Warren	Total operable capacity	70000
United refining co	Warren	Vacuum distillation	40000

_

References

(1) Bruun, E. W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H., Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. *Soil Biol. Biochem.* **2012**, *46*, 73-79, DOI: 10.1016/j.soilbio.2011.11.019.

(2) Ding, Y.; Liu, Y. G.; Liu, S. B.; Li, Z. W.; Tan, X. F.; Huang, X. X.; Zeng, G. M.; Zhou, L.; Zheng, B. H., Biochar to improve soil fertility. A review. *Agron. Sustainable Dev.* **2016**, *36* (2), DOI: 10.1007/s13593-016-0372-z.

(3) Peters, J. F.; Iribarren, D.; Dufour, J., Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assessment. *Environ. Sci. Technol.* **2015**, *49* (8), 5195-5202, DOI: 10.1021/es5060786.

(4) Ahrenfeldt, J.; Thomsen, T. P.; Henriksen, U.; Clausen, L. R., Biomass gasification cogeneration - A review of state of the art technology and near future perspectives. *Appl. Therm. Eng.* **2013**, *50* (2), 1407-1417, DOI: 10.1016/j.applthermaleng.2011.12.040.

(5) Toor, S. S.; Rosendahl, L.; Rudolf, A., Hydrothermal liquefaction of biomass: A review of subcritical water technologies. *Energy* **2011**, *36* (5), 2328-2342, DOI: 10.1016/j.energy.2011.03.013.

(6) Funke, A.; Ziegler, F., Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. *Biofuels, Bioprod. Biorefin.* **2010**, *4* (2), 160-177, DOI: 10.1002/bbb.198.

(7) Posmanik, R.; Labatut, R. A.; Kim, A. H.; Usack, J. G.; Tester, J. W.; Angenent, L. T., Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. *Bioresour. Technol.* **2017**, *233*, 134-143, DOI: 10.1016/j.bio.tech.2017.02.005

10.1016/j.biortech.2017.02.095.

(8) Cavalaglio, G.; Coccia, V.; Cotana, F.; Gelosia, M.; Nicolini, A.; Petrozzi, A., Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes. *Waste Manage*. **2018**, *73*, 496-503, DOI: 10.1016/j.wasman.2017.05.037.

(9) Kantarli, I. C.; Stefanidis, S. D.; Kalogiannis, K. G.; Lappas, A. A., Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis. *Waste Manage. Res.* **2019**, *37* (2), 157-167, DOI: 10.1177/0734242x18799870.

(10) Agblevor, F. A.; Beis, S.; Kim, S. S.; Tarrant, R.; Mante, N. O., Biocrude oils from the fast pyrolysis of poultry litter and hardwood. *Waste Manage*. **2010**, *30* (2), 298-307, DOI: 10.1016/j.wasman.2009.09.042.

(11) Sharpley, A.; Slaton, N.; Tabler, T.; VanDevender, K.; Daniels, M.; Jones, F.; Daniel, T. *Nutrient analysis of poultry litter*; University of Arkansas System: 2009.

(12) Bridgwater, A. V., Review of fast pyrolysis of biomass and product upgrading. *Biomass Bioenergy* **2012**, *38*, 68-94, DOI: 10.1016/j.biombioe.2011.01.048.

(13) Jones, S. B.; Zhu, Y.; Anderson, D. B.; Hallen, R. T.; Elliott, D. C.; Schmidt, A. J.;

Albrecht, K. O.; Hart, T. R.; Butcher, M. G.; Drennan, C.; Snowden-Swan, L. J.; Davis, R.;

Kinchin, C. Process Design and Economics for the Conversion of Algal Biomass to

Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading; PNNL-23227; Pacific Northwest National Lab. (PNNL): Richland, WA, 2014.

(14) Tews, I. J.; Zhu, Y.; Drennan, C.; Elliott, D. C.; Snowden-Swan, L. J.; Onarheim, K.; Solantausta, Y.; Beckman, D. *Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment*; PNNL-23579; Pacific Northwest National Lab. (PNNL): Richland, WA, 2014.

(15) Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D. *Techno-Economic Analysis of Biofuels Production Based on Gasification*; NREL/TP-6A20-46587; National Renewable Energy Lab. (NREL): Golden, CO, 2010.

(16) Baniasadi, M.; Tugnoli, A.; Conti, R.; Torri, C.; Fabbri, D.; Cozzani, V., Waste to energy valorization of poultry litter by slow pyrolysis. *Renewable Energy* **2016**, *90*, 458-468, DOI: 10.1016/j.renene.2016.01.018.

(17) Di Blasi, C., Modeling chemical and physical processes of wood and biomass pyrolysis. *Prog. Energy Combust. Sci.* **2008**, *34* (1), 47-90, DOI: 10.1016/j.pecs.2006.12.001.

(18) Al Arni, S., Comparison of slow and fast pyrolysis for converting biomass into fuel. *Renewable Energy* **2018**, *124*, 197-201, DOI: 10.1016/j.renene.2017.04.060.

(19) Brown, T. R.; Wright, M. M.; Brown, R. C., Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. *Biofuels, Bioprod. Biorefin.* **2011**, *5* (1), 54-68, DOI: 10.1002/bbb.254.

(20) Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D. *Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels*; NREL/TP-6A20-46586; National Renewable Energy Lab. (NREL): Golden, CO, 2010.

(21) Kim, S. S.; Agblevor, F. A.; Lim, J., Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. *J. Ind. Eng. Chem.* **2009**, *15* (2), 247-252, DOI: 10.1016/j.jiec.2008.10.004.

(22) Kim, S. S.; Agblevor, F. A., Pyrolysis characteristics and kinetics of chicken litter. *Waste Manage*. **2007**, *27* (1), 135-140, DOI: 10.1016/j.wasman.2006.01.012.

(23) Hussein, M. S.; Burra, K. G.; Amano, R. S.; Gupta, A. K., Temperature and gasifying media effects on chicken manure pyrolysis and gasification. *Fuel* **2017**, *202*, 36-45, DOI: 10.1016/j.fuel.2017.04.017.

(24) Hussein, M. S.; Burra, K. G.; Amano, R. S.; Gupta, A. K., Effect of oxygen addition in steam gasification of chicken manure. *Fuel* **2017**, *189*, 428-435, DOI: 10.1016/j.fuel.2016.11.005.

(25) Devi, L.; Ptasinski, K. J.; Janssen, F., A review of the primary measures for tar elimination in biomass gasification processes. *Biomass Bioenergy* **2003**, *24* (2), 125-140, DOI: 10.1016/s0961-9534(02)00102-2.

(26) Font-Palma, C., Characterisation, kinetics and modelling of gasification of poultry manure and litter: An overview. *Energy Convers. Manage.* **2012**, *53* (1), 92-98, DOI: 10.1016/j.enconman.2011.08.017.

(27) Horvat, A.; Pandey, D. S.; Kwapinska, M.; Mello, B. B.; Gomez-Barea, A.; Fryda, L. E.; Rabou, L.; Kwapinski, W.; Leahy, J. J., Tar yield and composition from poultry litter gasification in a fluidised bed reactor: effects of equivalence ratio, temperature and limestone addition. *RSC Adv.* **2019**, *9* (23), 13283-13296, DOI: 10.1039/c9ra02548k.

(28) Jones, S. B.; Valkenburt, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S. *Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case*; PNNL-18284 Rev. 1; Pacific Northwest National Lab. (PNNL), Richland, WA (United States): 2009.

(29) Baliban, R. C.; Elia, J. A.; Floudas, C. A.; Xiao, X.; Zhang, Z. J.; Li, J.; Cao, H. B.; Ma, J.; Qiao, Y.; Hu, X. T., Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization. *Ind. Eng. Chem. Res.* **2013**, *52* (33), 11436-11450, DOI: 10.1021/ie3034703.

(30) Aspen Plus. Getting Started Modeling Processes with Solids; Aspen Technology, Inc.: Cambridge, MA, 2013.

(31) Peters, J. F.; Banks, S. W.; Bridgwater, A. V.; Dufour, J., A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. *Appl. Energy* **2017**, *188*, 595-603, DOI: 10.1016/j.apenergy.2016.12.030.

(32) U.S. States: State Profiles and Energy Estimates - U.S. Energy Information Administration (EIA). <u>https://www.eia.gov/state/maps.php</u> (accessed 2019-08).

(33) Bridgwater, A. V., The production of biofuels and renewable chemicals by fast pyrolysis of biomass. *Int. J. Global Energy Issues* **2007**, *27* (2), 160-203.

(34) Freeman, C. J.; Jones, S. B.; Padmaperuma, A. B.; Santosa, D. M.; Valkenburg, C.; Shinn, J. *Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions*;

PNNL-22432; Pacific Northwest National Lab. (PNNL), Richland, WA, United States: 2013.
(35) Zhang, Q.; Gong, J.; Skwarczek, M.; Yue, D. J.; You, F. Q., Sustainable Process Design and Synthesis of Hydrocarbon Biorefinery through Fast Pyrolysis and Hydroprocessing. *AIChE J.* 2014, *60* (3), 980-994, DOI: 10.1002/aic.14344.

(36) Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, R. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover; NREL report NREL/TP-510-32438: 2002.

(37) Phillips, S.; Aden, A.; Jechura, J.; Dayton, D. *Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass.*; National Renewable Energy Laboratory: Golden CO, 2007.

(38) Roberts, K. G.; Gloy, B. A.; Joseph, S.; Scott, N. R.; Lehmann, J., Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. *Environ. Sci. Technol.* **2010**, *44* (2), 827-833, DOI: 10.1021/es902266r.

(39) Aspen Capital Cost Estimator - User's Guide (V8.0); Aspen Technology, Inc.: Burlington, MA, 2012.

(40) Monthly Average Retail Price of Electricity - Industrial - New York State Energy Research and Development Authority (NYSERDA). <u>https://www.nyserda.ny.gov/Researchers-and-</u>

<u>Policymakers/Energy-Prices/Electricity/Monthly-Avg-Electricity-Industrial</u> (accessed 2020-01). (41) Monthly Average Price of Natural Gas - Industrial - New York State Energy Research and

Development Authority (NYSERDA). <u>https://www.nyserda.ny.gov/Researchers-and-</u> Policymakers/Energy-Prices/Natural-Gas/Monthly-Average-Price-of-Natural-Gas-Industrial

(accessed 2020-01). (42) Weekly On-Highway Diesel Prices - New York State Energy Research and Development

Authority (NYSERDA). <u>https://www.nyserda.ny.gov/Researchers-and-Policymakers/Energy-</u> <u>Prices/On-Highway-Diesel/Weekly-Diesel-Prices</u> (accessed 2019-08).

(43) Weekly Average Motor Gasoline Prices - New York State Energy Research and Development Authority (NYSERDA). <u>https://www.nyserda.ny.gov/Researchers-and-</u> <u>Policymakers/Energy-Prices/Motor-Gasoline/Weekly-Average-Motor-Gasoline-Prices</u> (accessed 2019-08).

(44) New York State Energy Profile; U.S. Energy Information Administration (EIA).

(45) Huang, Y.; Anderson, M.; McIlveen-Wright, D.; Lyons, G. A.; McRoberts, W. C.; Wang, Y. D.; Roskilly, A. P.; Hewitt, N. J., Biochar and renewable energy generation from poultry litter waste: A technical and economic analysis based on computational simulations. *Appl. Energy* **2015**, *160*, 656-663, DOI: 10.1016/j.apenergy.2015.01.029.

(46) Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; Nakajima, T.; Robock, A.; Stephens, G.; Takemura, T.; Zhang, H. *Anthropogenic and Natural Radiative Forcing*; IPCC: New York, NY, USA, 2013.
(47) USDA Natural Resources Conservation Service: Animal Feeding Operations. <u>https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/plantsanimals/livestock/afo/</u> (accessed 2020-01).