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We examine the dynamic management of a soil resource—the issue at the core of both environmen-

tal and development challenges in developing countries. Our theoretical framework extends the tra-

ditional bioeconomic model of renewable resources to soil carbon management and investigates the

effects of changes in agricultural practices on farmers’ natural resource base and livelihoods. We pa-

rameterize the model using an eight-year panel data set from an agronomic experiment and data

from household and market surveys in the western Kenyan highlands. The optimal maize yields and

soil carbon stocks are higher than those observed in the region. This divergence is partly explained

by farmers’ heterogeneous time preferences (with the implied discount rates of 5% to 25%), infor-

mation barriers, and market imperfections. The steady-state shadow price for soil carbon ranges

from $95/Mg to $168/Mg, indicating a significant opportunity cost for soil mismanagement.
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Depletion of soil fertility is considered to be
one of the major biophysical causes of low
per capita food production in Sub-Saharan
Africa (SSA; Sanchez 2002). The neglect of
the rural sector by governments and the col-
lapse of traditional societies and their practi-
ces (e.g., fallowing) over many decades have
resulted in the removal of large quantities of
nutrients from soils without sufficient quanti-
ties of fertilizer or organic resources to re-
plenish them. Almost 40% of land across
SSA suffer from nutrient depletion, making it
the primary source of soil degradation across
the continent (Tully et al. 2015). Degraded
soils are less responsive to changing climate,
and more and more resources are needed to
maintain food production. As a result, about
414 million people in SSA—up from 290 mil-
lion people in 1990—live in extreme poverty,
and SSA remains the region with the highest
prevalence of undernourishment (UN 2014).
Soil resources also play a major role in the
global carbon cycle and contain about 2,500
billion metric tons of carbon, making soils the
largest terrestrial pool of carbon (Woodward
et al. 2009). And while agriculture accounts
for 20% to 30% of total global greenhouse
gas emissions, agricultural soils and biomass
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also sequester carbon out of the atmosphere
(WB 2012). “Climate-smart” farming
practices—retention of crop residues, re-
duced tillage, mulching, use of manures, agro-
forestry, and many others—can take
advantage of the soil role as a carbon sink
and a carbon store and simultaneously reduce
emissions.

In this article, we examine the manage-
ment of a soil resource in smallholder agricul-
ture in the tropics and ask to what extent
agricultural practices can enhance soil fertil-
ity, thus simultaneously increasing yields and
sequestering carbon. We develop a theoreti-
cal framework that extends the traditional
bioeconomic model of renewable resources
to soil carbon management and investigates
the effects of changes in practices on farmers’
natural resource base and livelihoods. We
calibrate the model to the western Kenyan
highlands to examine the management of a
soil resource in one particular setting. This in-
vestigation has considerable data require-
ments. Since soil degradation in the current
period imposes a reduction in net benefits on
the future generation, it needs to be evalu-
ated within an intertemporal framework. Yet,
the paucity of detailed information available
to economists, such as technical data on soil
fertility change and corresponding rates of
yield response, as well as the inherent com-
plexity of farming systems, has limited the dy-
namic analysis of soils in developing
countries. Some past studies focus on qualita-
tive analysis (e.g., French 1986), while others
simulate the effects of land degradation by in-
corporating parameters estimated in a sepa-
rate biophysical model into a model of
economic behavior (e.g., Barbier 1998). In
contrast, we have both detailed biophysical
and socio-economic data to parametrize one
bioeconomic model. Using an eight-year
panel data set from an agronomic chronose-
quence experiment in Vihiga and Nandi
counties, and data from household and mar-
ket surveys in the same area, our empirical
model combines an econometrically esti-
mated production function and a calibrated
soil carbon flow equation in a maximum prin-
ciple framework. The unique nature of our
chronosequence data set, comparable to a
quasi-natural experiment, allows for detailed
estimation of site-specific dynamic relation-
ships between land use management, agro-
nomic productivity, and soil fertility.

We use the bioeconomic model to deter-
mine the optimal management of the farming

system over time in terms of one “climate-
smart” farming practice—the combined
application of mineral fertilizer and crop resi-
dues. The application of both mineral and or-
ganic resources is required to overcome soil
fertility depletion (Vanlauwe and Giller
2006) and to sequester carbon (Lal 2014).
The two inputs fulfill different functions.
While the main role of mineral fertilizer is to
supply nutrients, organic resources replenish
soil carbon and soil organic matter stocks
that enhance soil physical, chemical, and bio-
logical processes and properties, which are
fundamental for long-term soil fertility and
nutrient use efficiency (Blanco-Canqui et al.
2013). The improvement of soil properties
not only sustains yields, but also enhances the
inherent capacity of soils to buffer against ex-
treme climatic events such as droughts, heat
waves, and floods. Moreover, the limited
availability and high cost of external inputs,
as well as competing uses for on-farm organic
resources (fuel and fodder) often discourage
the applications of either one in sufficient
quantities (Vanlauwe and Giller 2006). At
the same time, decomposition of crop resi-
dues into soil carbon may require additional
nutrients, such as nitrogen, phosphorus, and
sulfur (Richardson et al. 2014).

Given the prevailing price levels, we find
that the optimal management strategies lead
to maize yields that are far higher (3.53–
4.17 Mg/ha) than those currently observed in
the region. More depleted soils require
higher application rates of mineral fertilizer
and crop residues at the outset, thus decreas-
ing the net value of maize production on
farms with worse initial resource endow-
ments. Moreover, our focus on soil carbon
allows us to estimate the potential for soil
carbon sequestration in the research area,
and to assess its value. Similar to other stud-
ies in Sub-Saharan Africa, annual soil carbon
sequestration rates of 440 kg/ha and 240 kg/
ha can be achieved in western Kenya on de-
pleted and medium-fertility soils, respec-
tively. The steady-state shadow price for soil
carbon ranges from $95/Mg to $168/Mg (or
$27 to $47/Mg of CO2 equivalent), indicating
a significant opportunity cost to soil misman-
agement. In addition, we provide evidence on
the reasons for divergence between the opti-
mal management practices (as shown by our
model) and the current practices observed in
western Kenya. The equilibrium levels of soil
carbon and maize yield are highly dependent
on the discount rate used, carbon content of
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crop residues, and prices, suggesting the role
of farmers’ time and risk preferences,
information-related barriers, and imperfect
markets in agricultural production and natu-
ral resource management.

This article is broadly related to a body of
research in economics that examines human-
environment interactions. In particular, it
shares with a smaller set of articles an explicit
recognition of the direct impact of agricul-
tural practices on natural resource base and
rural livelihoods. Most existing studies exam-
ine the impact in a static framework. For ex-
ample, some consider the effects of
decreasing common pools of biomass or leav-
ing land fallow on agricultural production
and profits (Lopez 1997; Goldstein and Udry
2008), while others examine the impacts of
applying animal manure or crop residues on
agricultural livelihoods (Gavian and
Fafchamps 1996; Marenya and Barrett 2009;
Matsumoto and Yamano 2011; Teklewold
2012; Sheahan, Black, and Jayne 2013;
Berazneva et al. 2018a). Recognizing that
many natural resources are renewable, an-
other set of articles examines natural resour-
ces in a dynamic setting. Some of the earlier
work treating soil as a renewable resource
comes from the United States (see, e.g., Burt
1981 and McConnell 1983); more recently,
Barbier (1998) and Holden, Shiferaw, and
Pender (2005), for example, analyze land
degradation in a developing country setting.
Specifically for western Kenya, two simula-
tion models investigate the links between bio-
physical and economic processes at the farm
scale. Shepherd and Soule (1998) develop a
simulation model to predict the long-term
effects of farming systems on nutrient cycling,
plant production, and farm income, while
Stephens et al. (2012) use a system dynamics
model to examine the interactions between
natural resource-based poverty traps and
food security for small farms in Kenya.

Our article contributes to both static and
dynamic strands of the literature. Our dy-
namic bioeconomic (optimization) model
treats soil as an input in agricultural produc-
tion and a renewable resource, while the rich
agronomic and socio-economic data sets we
use allow for the model’s precise estimation.
We explicitly recognize that agricultural out-
comes depend on the conditions of local nat-
ural resources and model farmers’
intertemporal management practices and
their effects on current and future agricul-
tural productivity. Therefore, we offer a

method to demonstrate the potential for in-
creasing yields and sequestering carbon and
to estimate the monetary value of soil carbon
that can be applied in other settings; we also
present a detailed case study relevant for im-
proved resource allocation at the farm level
and for national agricultural policy in Kenya.

Focus on Soil Carbon

We focus on soil carbon as the interface be-
tween the social and biophysical processes.
There are several compelling reasons for do-
ing so. First, there is a strong relation be-
tween soil organic carbon (SOC) and soil
fertility, on the one hand, and crop productiv-
ity and soil fertility on the other. Although
SOC is not essential to plant growth per se,
the SOC pool is related to the amount of soil
organic matter (SOM), which contains soil ni-
trogen, phosphorus, and other important soil
macro- and micro-nutrients. Soil organic mat-
ter has multiple benefits to soil productivity
(such as nutrient availability, water-holding
capacity, and soil biota) and to agronomic
productivity, with the impact on the quantity
of external inputs required to achieve a given
yield (Lal 2006; Blanco-Canqui et al. 2013).
Additionally, increases in SOC and SOM not
only increase average yields, but also de-
crease the susceptibility of yields to weather
shocks (Graff-Zivin and Lipper 2008).

Land use decisions have a major influence
on the level of the SOC pool. A large fraction
of the accumulated carbon and soil nutrients
is lost following land conversion from natural
environments (e.g., forests) to agricultural
land (Murty et al. 2002). Current agricultural
technologies and practices in resource-poor
economies also deplete the SOC and SOM
pools, and by doing so degrade soil fertility
with an adverse effect on agronomic produc-
tivity. At the same time, agricultural practices
that alter the inputs of organic matter or the
decomposition rate of SOM can build up the
stock of soil organic carbon. Such practices
include residue retention, nitrogen fertiliza-
tion, fallowing, no-till farming, manuring,
composting, mulching, incorporation of grass
and legumes in the rotation cycle, and the use
of agroforestry systems (Lal 2006; WB 2012).

The second reason for our focus on soil
carbon is found in the potential of carbon se-
questration to simultaneously achieve two
sustainability goals: the improvement of
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agricultural productivity and climate change
mitigation (Antle and Stoorvogel 2008). Soils
and the biomass therein contain about 2,500
petagrams (1 Pg is equal to one billion metric
tons) of carbon within a one-meter depth,
making soils the largest terrestrial pool of
carbon (Woodward et al. 2009). Land use
changes and agricultural practices can trans-
fer the CO2 in the atmosphere to soil organic
carbon. While the potential soil carbon se-
questration capacity is not well known, some
estimates suggest that sustainable land use
and agriculture could sequester 0.4–1.2 Pg of
carbon per year (Lal 2004). This amount is
equivalent to 5% to 15% of global emissions
from fossil fuels. The rate of carbon seques-
tration of no-tillage and residue management,
adjusted for emissions associated with these
technologies, for example, ranges from 240
kg C/ha to 950 kg C/ha per year (or 0.88–3.48
Mg CO2 equivalent/ha) across Latin
America, Asia, and Africa (WB 2012).1

The third reason for focusing on soil car-
bon, as Antle and Stoorvogel (2008) note, is
the fact that despite great interest in the in-
ternational community and among national
policy-makers, there is little available infor-
mation about the potential for and impacts of
payments for agricultural carbon sequestra-
tion from actual projects. By estimating the
potential for carbon sequestration and valu-
ing carbon on the western Kenyan farms, we
provide such empirical evidence.

Study Area: Western Kenyan Highlands

The western Kenyan highlands provide our
case study. Surrounding Lake Victoria on the
Kenyan side, this is one of the most densely
populated regions of the country, with about
40% to 50% of the population living in pov-
erty (KIPPRA 2013). Average farms are
about 0.5–2 hectares in size and originally
formed part of the Guineo-Congolese forest
system that became converted to agricultural
land in the twentieth century. Households en-
gage in a range of agricultural activities: they
cultivate food and cash crops (both annual
and perennial), keep chickens and livestock,
and grow trees on woodlots for timber and
fuel. While their main objective is increasing
food supplies, smallholder farmers also strive

to earn income and make a profit (Waithaka
et al. 2006). Land is privately owned, with
most parcels either inherited or purchased.

Farms have medium to high agricultural
potential (WRI 2007), but suffer from severe
soil degradation. Dominant soil types are
acrisols, ferralsols, and nitisols (Jaetzold and
Schmidt 1982), with many characterized by
soil acidity and phosphorus deficiency
(Kisinyo et al. 2014). Soil erosion due to rain
is also common. The incorporation of crop
residues at plowing, crop rotations, and short
fallows were some of the means of maintain-
ing soil fertility in western Kenya until the
1960s (Crowley and Carter 2000). As popula-
tion increased and farm areas declined, how-
ever, crop rotations and fallowing periods
were reduced and most farmers stopped
planting woodlots, making cereal residues
main sources of fuel and animal feed. In this
area, less than half of all residues are left on
the field, mulched, or collected to apply as or-
ganic amendments for soil fertility manage-
ment; the other half are roughly equally split
between household energy and animal feed
(Berazneva et al. 2018a).2 As a result, the
amount of organic material returned to the
soil after harvest has significantly declined
and maize monoculture has hastened soil de-
terioration (Solomon et al. 2007).

We examine one of the main agricultural
activities of households in rural western
Kenya—production of a staple crop, maize
(Zea mays L.). Maize is the most commonly
grown and consumed grain in the area, hav-
ing been established as a dominant food crop
in Kenya at the beginning of the twentieth
century (Crowley and Carter 2000). Farmers
in the area believe that a successful farm
must produce the staple maize for home con-
sumption, while the surplus maize is to be
sold to neighbors or the local market
(Waithaka et al. 2006).3 Despite its signifi-
cance (the cereal is also cultivated on the
largest proportion of farm area), maize
production often results in low yields.
Farmer-reported average annual maize yield
in western Kenya is 1.65 Mg/ha

1 Conversion from carbon to carbon dioxide is done by multi-
plying the amount of carbon by 3.667 (WB 2012).

2 The household survey, described below, shows that over
80% of farmers currently use maize residues for soil fertility
management. The top three additional conservation investments
are intercropping (78% of plots), building of terraces (27% of
plots), and using rotations (16% of plots).

3 About 40% of households in our survey sell maize, and
among those who do, only about 5% sell more than 63% of their
annual yield.
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(Berazneva et al. 2018a; average yield is 2.71
Mg/ha in the nationwide Tegemeo Rural
Household Survey as reported in Sheahan,
Black, and Jayne 2013).4 These yields corre-
spond to current agricultural practices—no
fallowing, limited use of hybrid seeds and low
application rates of mineral fertilizer and or-
ganic resources, and conventional (hand,
oxen, or tractor) tilling.

Over the last several decades, however,
Kenya has experienced expanding markets
for agricultural inputs and outputs. Sheahan,
Black, and Jayne (2013), for example, docu-
ment the consistent increase in risk-adjusted
economically optimal rates of fertilizer appli-
cation since the mid-1990s. Holden, Otsuka,
and Place (2009) show that land rental mar-
kets in densely-populated areas of SSA are
active, where land is scarce and land holdings
are fragmented. And using data from the
Siaya Lands Office of the ministry of lands in
Kenya, Michelson and Tully (2018) provide
evidence of vibrant and well-functioning land
markets in western Kenya.

Data from several sources are used to build
our bioeconomic model. Plot-level maize
yields and carbon stocks come from a long-
term agronomic experiment in the Vihiga
and Nandi counties of western Kenya from
2005 to 2012, while socio-economic house-
hold-level data and prices are from the
household and market surveys in the counties
surrounding the agronomic sites from 2011 to
2013. The survey and agronomic experiment
locations are shown in figure 1 and further
discussed in the sections that follow.

Economic Model

Our model is similar to that of Burt (1981):
we assume that the farmer’s objective is to
maximize the discounted present value of net
returns from land over an infinite planning
horizon. Instead of focusing on the depth of
top soil and percentage of soil organic matter
to capture soil fertility, however, we use soil
carbon as a state variable that influences ag-
ronomic productivity, and its flow depends on
the choice of farming practices. Adopting the
model to a developing-country setting
requires several additional considerations. In
response to incomplete or missing markets,

rural households may link their production
and consumption decisions to satisfy multiple
objectives of income generation, food secu-
rity, and risk reduction with potential impacts
on the management of natural resources (de
Janvry, Fafchamps, and Sadoulet 1991;
Holden and Binswanger 1998). As a result of
ambiguous or insecure property tenure rights,
households may also adjust their agricultural
practices and underinvest in long-term soil
resource management (Goldstein and Udry
2008). In addition, the inherent uncertainty
of agricultural activities may be amplified in
the context of low-resource rain-fed agricul-
ture that is more susceptible to weather fluc-
tuations and volatility of agricultural markets
or policy environments (Rosenzweig and
Binswanger 1993).

As discussed above, the assumption of
functioning markets may be reasonable in the
context of western Kenya, where property
rights are also secure.5 Similar to Wise and
Cacho (2011) and Pagiola (1999), we argue
that net returns to agricultural production is
an important part of the farmers’ objectives
and a necessary condition to adopt conserva-
tion practices, and following Burt (1981), as-
sume an infinite planning horizon. Net
returns represent the amount of profits the
household could earn if both maize grain and
residue were marketable outputs. To allow
for some market imperfections, however, we
explicitly account for the opportunity cost of
household labor, land, and organic resources,
use farmer-reported prices that reflect poten-
tial transaction costs, and availability con-
straints, and perform sensitivity analysis.
Introducing farmers’ risk aversion via a con-
cave utility function, as is a common practice
(Moschini and Hennessy 2001), does not alter
the derivation of the steady-state results.
Following Conrad and Leard (2013), we es-
tablish the equivalence of the steady-state
results when maximizing the present value of
net returns or when maximizing the present
value of utility for a risk-averse farmer in an
online supplementary appendix (A.1).

4 1 megagram (Mg) ¼ 1,000 kilogram (kg) ¼ 1 metric ton; 1
hectare (ha) ¼ 10,000 square meters.

5 In the sample of households used in the empirical estimation,
84% of households engage in off-farm employment, 62% hire ag-
ricultural laborers, 60% purchase fertilizer, and about 15% par-
ticipate in land markets, either renting in or renting out parcels
of land for cultivation. Almost all households own at least one
parcel of land with over 90% of households having a document
to certify land right (usually a title deed with land registration
certificate) and about 94% do not report ever having conflict
over land ownership.
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We note, however, that our model has its
limitations. We focus only on the production
of one crop during the main agricultural sea-
son and one “climate-smart” farming prac-
tice. We thus abstract from other farming
decisions, such as choice of crops or alloca-
tion of resources to food or cash crops, live-
stock rearing, or cultivation of trees. We also
assume away the variation in farm size and
thus impose constant returns to scale. While
our model is necessarily a simplification of
complex smallholder systems, however, our
assumptions allow for the estimation of exact
relationships in maize production, make our
model fully bioeconomic, and offer important
insights for agricultural policy and climate
mitigation.

Farmer’s Objective

Suppose a representative farmer cultivates a
hectare of land of homogenous quality with
maize during the main agricultural season.
Let ct represent the state of farmer’s land in
year t, defined by a single soil-fertility
indicator—soil carbon content. The farmer

grows maize by making two management
decisions: let ft be the quantity of mineral ni-
trogen applied and at 2 ½0; 1� be the share of
maize residues left on the field for soil fertil-
ity at the end of year, t, that influences the
stock of soil carbon in tþ 1. Maize production
(Mg/ha) is then a function of soil carbon and
nitrogen fertilizer: yt ¼ yðct; ftÞ. The change
in soil carbon content depends not only on
the carbon content in the previous period,
but also on the farmer’s management deci-
sions: ctþ1 � ct ¼ gðct; ft; atÞ, where gð�Þ is a
function describing soil carbon dynamics.
The initial level of soil carbon, c0 ¼ a > 0, is
given. The farmer earns net revenue from
growing maize and also derives value from
having maize residues to be used as cooking
fuel, animal feed, or soil organic amend-
ment. Let pt ¼ pðct; ft; atÞ ¼ pyðct; ftÞ þ qrt

�nft� qrtat �m be the annual net returns
obtained from a hectare planted with maize,
where p is the price of maize ($/Mg), q is the
per unit value of crop residues in highest
household use ($/Mg), rt is the total quantity
of maize residues produced in year t (Mg/ha),
n is the price of nitrogen ($/Mg), and m is the

Figure 1. Research sites

Note: The map shows the location of farms in the chronosequence experiment and survey villages in the household survey.
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per-hectare cost of preparing the land, plant-
ing, and harvesting maize ($/ha).

The farmer’s objective is then to maximize
the discounted present value of annual net
returns by growing maize on a hectare of
land over an infinite horizon, with a discount
factor q ¼ 1=ð1þ dÞ for the discount rate d:

ð1Þ maxfft ;atg p ¼
X1
t¼0

qt½pyðct; ftÞ þ qrt

� nft � qrtat �m�
subject to

ctþ1 � ct ¼ gðct; ft; atÞ;

c0 ¼ a > 0; given:

We assume that total crop residues pro-
duced in period t are a fraction of maize yield
in period t, so that rt ¼ kyt, where k is the
time-independent conversion parameter
(maize residue to grain ratio).6 Restricting ft,
at, ct and kt, the multiplier on the soil carbon
constraint, to being nonnegative, the discrete-
time current value Hamiltonian can be writ-
ten as

ð2Þ H ¼ pyðct; ftÞ þ qkyðct; ftÞ � nft

� qkyðct; ftÞat �mþ qktþ1gðct; ft; atÞ
¼ ðpþ qkð1� atÞÞyðct; ftÞ � nft

�mþ qktþ1gðct; ft; atÞ

where the multiplier ktþ1 can be interpreted
as the current-value shadow price of the soil
carbon stock at time tþ 1. The first order con-
ditions require that

ð3Þ @H

@ft
¼ ðpþ qkð1� atÞÞ

@yð�Þ
@ft
� nþ qktþ1

@gð�Þ
@ft
¼ 0;

ð4Þ @H

@at
¼ �qkyð�Þ þ qktþ1

@gð�Þ
@at

¼ 0;

ð5Þ qktþ1 � kt ¼ �
@H

@ct
¼

� ðpþ qkð1� atÞ½ Þ @yð�Þ
@ct
þ qktþ1

@gð�Þ
@ct
�;

ð6Þ ctþ1 � ct ¼
@H

@½qktþ1�
¼ gðct; ft; atÞ:

Re-writing the first-order conditions, we
have the following results:

ð7Þ ðpþ qkð1� atÞÞ
@yð�Þ
@ft
þ qktþ1

@gð�Þ
@ft
¼ n;

ð8Þ qktþ1
@gð�Þ
@at

¼ qkyð�Þ;

ð9Þ kt ¼ qktþ1 1þ @gð�Þ
@ct

� �

þ ðpþ qkð1� atÞÞ
@yð�Þ
@ct

;

ð10Þ ctþ1 � ct ¼ gðct; ft; atÞ:

Equations (7) and (8) equate “full marginal
value” to marginal cost for the two manage-
ment variables, f and a. Full marginal value is
the marginal value product in current produc-
tion plus the marginal value based on the dis-
counted shadow price for carbon in tþ 1.
Equation (9) is a form of the co-state equa-
tion relating the shadow price on carbon in
period t to its discounted future marginal
value in tþ 1, plus the marginal value product
of carbon in production in period t. Equation
(10) is a restatement of the state equation.

Empirical Model

The construction of the empirical model used
to estimate the farmer’s maximization prob-
lem (equation 1) consists of several steps. We
first specify and econometrically estimate the
maize yield equation (yð�Þ) as a function of
soil organic carbon stock (to a depth of 0.1
meter) (c) and nitrogen fertilizer (f). We then
specify and calibrate the soil carbon equation
(gð�Þ) to approximate the annual change in
soil carbon stock from maize residues left on
the field and carbon loss from mineralization.
The two equations interactively describe
crop-yield dynamics and soil-carbon changes
and provide parameters for our bioeconomic
model. As a last step, we describe the eco-
nomic variables and their sources before pro-
ceeding to the discussion of our results.

Maize Yield Function

The biophysical data used to estimate the
maize yield function come from agronomic
experimental sites in Vihiga and Nandi

6 Residue or straw to grain ratio is a standard conversion pa-
rameter to estimate the production of crop residues (Smil 1999).
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counties in western Kenya. The sites were
established in 2005 and maintained until 2012
as a part of a chronosequence experiment
designed to analyze the long-term effects of
land conversion from primary forest to con-
tinuous agriculture (Kimetu et al. 2008;
Kinyangi 2008; Ngoze et al. 2008; Güere~na
et al. 2016). A chronosequence—a set of sites
that share similar attributes but are of differ-
ent ages—was established on 28 farms of dif-
ferent ages since conversion from forest to
agricultural land.7 Prior to the establishment
of the experimental sites, soils had received
very little or no mineral fertilizer since forest
clearing, no animal manure, and had been
cropped with maize for five, twenty, thirty-
five, eighty, and 105 years (Kinyangi 2008).

Each year experimental plots received ni-
trogen mineral fertilizer at a rate of 0 or 120
kg per hectare, and in 2011 and 2012 the ni-
trogen (N) application rate varied at 0, 80,
120, 160, 200, or 240 kg per hectare. In addi-
tion, organic inputs (Tithonia diversifolia
leaves, wood charcoal, and sawdust) were ap-
plied at a rate of 18 Mg of carbon per hectare
over three seasons in 2005 and 2006 (6 Mg/ha
per season). All other management variables
(e.g., type of maize hybrid seed, timing of
weeding and harvesting, etc.) were main-
tained the same across the sites. The four
treatments include control (with and without
N), Tithonia diversifolia (with and without
N), charcoal (with and without N), and saw-
dust (with and without N). Maize grain yield
data (oven-dry measurements) are available
for each farm, treatment, and year. A sub-
sample representing three major age groups,
each treatment, and year (177 samples), was
analyzed for total soil carbon.8 Following
Kinyangi (2008), the resulting data were fit-
ted using a three-parameter exponential de-
cay model for each of treatment-fertilizer
sub-samples and the established relationships
were then used to predict plot-specific soil
carbon stocks (the sampling procedure and
the construction of soil carbon stock variable
are described in the online appendix A.2.).9

In the research sites, soils are acidic and do
not contain carbonates, so the reported total
soil carbon is equivalent to organic soil car-
bon. Since over 90% of phosphorus is held in
organic form, soil carbon also indirectly con-
trols for phosphorus and other soil nutrients
that may be limiting in the context of western
Kenya. Pooling observations across eight
years, 28 farms, and four treatments, there
are 1,450 observations.10 Table 1 shows sum-
mary statistics for the variables used.11

The heterogeneity of soil fertility and the
differing impacts of inputs on individual
plants on otherwise homogenous farms have
been shown to imply a smooth aggregate pro-
duction function (Berck and Helfand 1990).
We use a quadratic specification to approxi-
mate the unknown true relationship between
maize yields, soil carbon stocks and nitrogen
applications, and to capture the interactions
between soil fertility and nitrogen inputs. The
same functional form is also used in recent
studies focusing on maize production and
soils across SSA (see, e.g., Sheahan, Black,
and Jayne (2013) and Harou et al. (2017)).
We estimate

Table 1. Maize Production During the Long
Rains Season, 2005–2012

Variable Mean St.dev. Min. Max.

Maize grain yield
(Mg/ha)

4.05 2.47 0.16 12.14

Soil carbon stock
(to a depth
of 0.1 m) (Mg/ha)

45.64 18.53 31.79 182.49

Nitrogen fertilizer
application
(Mg/ha)

0.08 0.07 0 0.24

Note: N¼ 1, 450. Data from the chronosequence experiment for estimation

of equation (11).

7 A chronosequence is an important tool for studying tempo-
ral dynamics of soil development across multiple time-scales
(Stevens and Walker 1970).

8 The soil analysis for total soil carbon was done after ball
milling using a Dumas combustion analyzer (NC 2100 Analyzer,
ThemoQuest Italia S.p.A., Rodano-Milan, Italy). Bulk density
was sampled in three locations per plot at harvest and the aver-
age was taken.

9 Soil samples were collected at harvest of the long rains sea-
son, so that in the final predictions a lagged variable is used: for

example, a soil carbon stock measured during the harvest of 2005
is used as ct¼2006, a soil carbon stock relevant for maize produc-
tion in 2006.

10 The number of observations differs by farm. Several farms
exited the chronosequence experiment because of their change
in land ownership or farmers decided to discontinue working
with the researchers. Some other observations are missing due to
outlier status in grain yield measurements or other recording
issues. We omit observations with the values of maize yield in the
top and bottom 1% of the distribution.

11 Nitrogen content of maize roots and residues is very low; it
averages around 1% (e.g., 0.7% in Gentile et al. (2011), 1.06% in
Kinyangi (2008), or 1.27% in Latshaw and Miller (1924)). We do
not add nitrogen in maize residues to nitrogen from mineral
fertilizer.

1028 July 2019 Amer. J. Agr. Econ.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article/101/4/1021/5488536 by C

ornell U
niversity Library user on 10 August 2020

Deleted Text: <xref ref-type=
Deleted Text:  <xref ref-type=
Deleted Text: 5
Deleted Text: 20
Deleted Text: 35
Deleted Text: 80
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: ,
https://academic.oup.com/ajae/article-lookup/doi/10.1093/ajae/aaz014#supplementary-data
Deleted Text: that 
Deleted Text:  percent
Deleted Text:  
Deleted Text: Sub-Saharan Africa
Deleted Text: for example
Deleted Text: e.g.
Deleted Text: one
Deleted Text:  percent
Deleted Text:  percent
Deleted Text: for example
Deleted Text:  percent
Deleted Text:  percent
Deleted Text:  percent


ð11Þ ykit ¼ c0 þ ccckit þ cccc2
kit þ cf fkit

þ cff f 2
kit þ ccf ckitfkit þ gk þ fi þ ht

þ nkt þ �kit

where ykit is maize yield (Mg/ha) for treat-
ment k on farm i at time t, ckit is the soil car-
bon stock (Mg/ha), fkit is the nitrogen
fertilizer input (Mg/ha), c0, cc, ccc, cf, cff and
ccf are coefficients to be estimated, gk is a
treatment fixed effect, fi is a farm-level fixed
effect, ht is a year fixed effect, nkt is a
treatment-year interaction fixed effect, and
�kit is the i.i.d., mean zero, normally distrib-
uted regression error. Farm, year, and treat-
ment fixed effects control for initial
conditions and time-invariant farm heteroge-
neity (i.e., slope, drainage, etc.), annual
changes in rainfall and other weather effects,
and the treatments, respectively. Since rain-
fall may have differential impacts on plots
with different treatments, we also include the
year-treatment interaction.

Similarly to Harou et al. (2017), our data
and, therefore, estimations focus on locally
attainable yields, which are defined as the
yields from researcher-managed plots or the
maximum yields achievable by resource-
endowed farmers in their most productive
fields (95th-percentile yields in a farmer field
survey) (Tittonell and Giller 2013). The aver-
age maize yields from the chronosequence
experiment are 4.05 Mg/ha, while they are
4.38 Mg/ha for the 95th-percentile of farmers
in the household survey conducted in the
same area. The chronosequence data set
allows us to make credible estimates of the
yield response rates to soil carbon and the
additions of mineral fertilizer. It does not al-
low, however, to incorporate legume inter-
cropping, additions of animal manure as soil
amendments, or other common agricultural
practices of the western Kenyan highlands.

Table 2 displays the estimated coefficients
of the maize yield function. Column (1)
shows the standard errors clustered at the
farm level, while column (2) shows boot-
strapped standard errors. The quadratic spec-
ification fits the data with an R-squared of
0.50, and we cannot reject the joint signifi-
cance of the second-order terms (a Wald test
statistic of 8.16 and a p-value of zero against
the v2(3) distribution). For every additional
Mg of soil carbon stock, the mean increase in
maize yields is 60 kg, while an addition of
100 kg of nitrogen fertilizer results in the
mean yield increase of 1,039 kg (the

distributions of the estimated returns are
shown in figure 2).12 The negative coefficient
on the interaction term between carbon stock
and nitrogen fertilizer suggests some substi-
tutability between the two inputs, consistent
with the findings of a comprehensive meta
analysis from the 57 agronomic studies of
maize yields on smallholder farms across
SSA of Chivenge, Vanlauwe, and Six (2011).
These authors find that the combined addi-
tion of organic resources and nitrogen fertil-
izer results in negative interactive effects on
maize yields, which can be explained by an
excess amount of nitrogen added.13 Our data

Table 2. Maize Grain Yield as a Function of
Soil Carbon Stock and Nitrogen Fertilizer

(1) (2)
Maize grain yield
(Mg/ha)

Clustered
st.errors

Bootstrapped
st.errors

Soil carbon stock
(Mg/ha)

0.113*** 0.113***
(0.0354) (0.0264)

Squared: Soil carbon
stock

�0.000413** �0.000413***
(0.000157) (0.000126)

Nitrogen fertilizer
(Mg/ha)

27.04*** 27.04***
(4.704) (3.119)

Squared: Nitrogen
fertilizer

�41.30*** �41.30***
(10.12) (10.46)

Interaction: Soil
carbon stock and
nitrogen fertilizer

�0.218*** �0.218***
(0.0632) (0.0564)

Constant �1.461 �1.461
(1.215) (0.910)

Observations 1,450 1,450
R-squared 0.500 0.500

Note: Estimation of equation (11). Data from the chronosequence experi-

ment. Asterisks indicate the following: *** ¼ p< 0.01, ** ¼ p< 0.05, and *

¼ p< 0.1. Column (1) shows standard errors (values in brackets) clustered

at farm level (28 farms). Column (2) shows bootstrapped standard errors (1,

000 replications). Estimation includes farm, year, and treatment fixed

effects, as well as year-treatment interaction.

12 Diaz-Zorita, Duarte, and Grove (2002) find a similar rela-
tionship: a 1 Mg/ha decrease in SOC is associated with a 0.04 Mg/
ha yield loss across 134 farmers’ wheat fields in Argentina.

13 Over 70% of the studies included in the meta analysis ap-
plied at least 100 kg of nitrogen per hectare, which can reduce
the agronomic N use efficiency and conceal the possible positive
interactions. The N application rate in our sample is 120 kg N/ha
for most observations and we find similar agronomic N use effi-
ciency: 12 kg of maize grain per 1 kg of nitrogen added, similar to
the 14 kg of maize grain estimated by Chivenge, Vanlauwe, and
Six (2011). Agronomic N use efficiency is calculated for the sam-
ple averages according to the following formula: N use efficiency
¼ (maize yield on treatment plots—maize yield on control plots)/
total N applied. Marenya and Barrett (2009), in contrast, find
complementaries between soil carbon and nitrogen fertilizer in
the same research area as ours. N applications in their study are
much lower—average of 5 kg for an average plot size of 0.33 ha
(about 16 kg N/ha, similar to farmer-reported application rates in
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and estimation also support the findings of
Chivenge et al. (2007) and Chivenge,
Vanlauwe, and Six (2011), namely that the
combined applications of organic resources
and nitrogen results in lower soil organic car-
bon than the addition of organic resources
alone. This may be attributed to enhanced
decomposition of the added organic resour-
ces (Knorr, Frey, and Curtis 2005; Khan et al.
2007; Kimetu et al. 2009).14

Soil Carbon Equation

Annual changes in soil carbon stock reflect
the balance between carbon outflows and
inflows. Outflows are losses through gas
fluxes associated with microbial and plant
respiration, water and wind erosion, and deep
leaching. Inflows include carbon in crop resi-
dues, animal manure, compost, and other or-
ganic resources (Blanco-Canqui et al. 2013).
As a first-step approximation, we model the

annual change in soil carbon, Dc ¼ ctþ1 � ct,
as a sum of carbon losses in the form of car-
bon mineralization and carbon additions in
the form of maize residues left on the field
for soil fertility:

ð12Þ ctþ1 � ct ¼ �Dct þAðatFkyðct; ftÞÞB

where D is rate of annual soil carbon loss
with conventional tillage, A and B are param-
eters calibrated using the Rothamsted
Carbon Model for turnover of carbon in soil
(Coleman and Jenkinson 1996), F is carbon
content of maize residues, and k is maize resi-
due to grain ratio.

According to the Intergovernmental Panel
on Climate Change (IPCC) Tier 1 guidelines,
the relative soil carbon stock change factor is
0.91 (64%) for tropical wet soils with con-
ventional tillage and low residue return,
which implies an average 10% annual de-
crease in soil carbon stock (IPCC 2003). The
main loss of soil carbon is CO2 release from
the soil surface, referred to as carbon miner-
alization, mainly as a result of microbial de-
composition of soil organic matter (SOM).
While SOM is crucial for maintaining overall
soil fertility, its higher levels induce greater
microbial decomposition, leading to higher

Figure 2. Distributions of estimated returns to soil carbon and nitrogen fertilizer (Mg/ha)

Note: The distribution of estimated returns to soil carbon, @y=@c ¼ cc þ 2ccccþ ccf f , is on the left panel (N¼1,450) and to nitrogen fertilizer,

@y=@f ¼ cf þ 2cff f þ ccf c, is on the right panel (N¼882 observations with f > 0), following equation (11) and table 2.

our household survey), while soil carbon is measured as percent
by weight as determined by lab analyses.

14 Our data corroborate this finding. The average maize yield
following the addition of organic resources and nitrogen fertilizer
is 4.52 Mg/ha as opposed to 3.33 Mg/ha following the addition of
organic resources alone; while average total soil carbon stock is
lower: 43.69 Mg/ha vs. 48.68 Mg/ha. These differences are also
statistically significant (with the p-value¼0.0000).
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rates of carbon loss through CO2 mineraliza-
tion. Using a laboratory experiment to study
the impacts of pre-existing SOM on soil min-
eralization after addition of organic matter in
soils from the chronosequence farms, Kimetu
et al. (2009) show that carbon losses are
greater in the carbon-rich soils than in
carbon-poor soils regardless of the quality of
the applied organic resource. Total CO2-C
annual mineralization (C loss to C stock ra-
tio) is found to depend on the time in contin-
uous cultivation: it is between 8% and 12%
over the course of one year; D is assumed to
be 0.11.

The main source of soil carbon inflows in
the study area is maize residues left on the
field from previous seasons. Parameters A
and B are chosen to fit the equilibrium levels
of soil carbon, shown by the Rothamsted
Carbon Model, calibrated for the geographic
location of the chronosequence farms and the
equilibrium levels of maize yields (details of
the calibration are in the online supplemen-
tary appendix A.3). Parameter k is the me-
dian value of maize residue to grain ratio in
the chronosequence data, while F, carbon
content of maize residues, is the weighted
carbon content of leaves, stems, and cobs
from Latshaw and Miller (1924).

Prices

The data used to derive the economic varia-
bles come from the detailed household sur-
vey in the Nyando and Yala river basins of
western Kenya in 2011/12. The survey in-
cluded over 300 randomly selected farming
households in 15 villages in Kakamega,
Kericho, Kisumu, Siaya, Uasin Gishu, and
Vihiga counties and a wide range of topics
covering agricultural activities, socio-
economic status, and natural resource use.15

Sampling, design, and implementation of the
survey are described in Berazneva (2015). In
addition, price and market data were col-
lected from public sources and interviews
with farmers, as well as market sellers and
buyers, in the same villages and town centers
in close proximity to the survey villages in
2011, 2012, and 2013. Economic variables

used in the empirical model are prices of
maize grain (p) and nitrogen (n), the per-
hectare cost of preparing the land, planting,
and harvesting maize (m), opportunity cost of
maize residues (q), and the discount rate (d).

The empirical distributions of prices
reported in the household survey are summa-
rized in table 3. They reflect small quantity
premiums, travel costs, local availability, and
other potential transaction costs. The median
price of maize grain (p) is $331/Mg, while the
average maize price reported in market sur-
veys is slightly higher, $410/Mg. The main
sources of nitrogen in western Kenya are
found in the fertilizer mixes: Di-ammonium
phosphate (DAP) with a nitrogen content of
18% is commonly applied during planting,
while urea (N content 46%) and calcium am-
monium nitrate (CAN; N content 26%) are
applied as top dressing. The cheapest source
of nitrogen is urea fertilizer (2,070 $/Mg); all
three fertilizer types, however, are commonly
applied. To represent local availability and
preferences, similar to Sheahan, Ariga, and
Jayne (2016), we construct a composite price
of nitrogen from the prices of the main fertil-
izer types using their relative shares in the
household survey as weights.16 The compos-
ite median price of nitrogen (n) is $4,434/Mg
(its equivalent from the market surveys is
$4,390/Mg).

The per-hectare cost of preparing the land,
planting, and harvesting maize (m) includes
the additional monetary and opportunity
costs incurred during maize production—the
cost of seeds, transportation, equipment,
sacks for storage, etc., as well as paid and
household labor and land rental value. The
opportunity cost of household labor is calcu-
lated by multiplying the number of days
worked by household members and an aver-
age agricultural daily wage of 100 Kenyan
shillings. To account for the opportunity cost
of land, we run a hedonic analysis of land
characteristics using the reported land rental
value for the households that rented in or
rented out parcels during the household sur-
vey. Parcel characteristics include perceived
soil type and quality, as well as measured soil
carbon content and altitude. We then use the
estimated coefficients to calculate the

15 Three villages were randomly selected from each of the five
10-kilometer blocks that were part of the original geographic
coverage of the Western Kenya Integrated Ecosystem
Management Project, which was implemented from 2005 to 2010
by the Kenya Agricultural Research Institute and the World
Agroforestry Center.

16 The formula used is the following: n¼price of
DAP=0:18 � 0:69 þ price of urea=0:46� 0:16 þ price of CAN
=0:26� 0:15. The weights (0.69 for DAP, 0.16 for urea, and 0.15
for CAN) are derived from the household survey.
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average land rental value in the entire sample
of surveyed households. The results of the he-
donic regression and the distribution of all
prices used in the analysis are reported in the
online supplementary appendix A.4.17

The use of maize residues for soil fertility
management among western Kenyan farmers
is traded off against two other competing
uses of biomass: household energy and live-
stock feed. Berazneva et al. (2018a) estimate
the value of maize residues left on the fields
for soil fertility management, using the same
household survey. The median value (q) is
$58/Mg and it is similar to the value of crop
residues in other household uses. While very
few households in the survey purchased live-
stock feed, many bought fuelwood.18 The
mean (median) price of fuelwood in the
household survey is $77 (61)/Mg.

Another critical factor affecting farmers’
investment in soil resource conservation is
the extent to which they discount the future.
Higher discount rates lead to lower than opti-
mal steady-state stocks of renewable resour-
ces and faster depletion rates of non-
renewable resources (Hotelling 1931; Clark
1990). Previous empirical research suggests
that the discount rates implied by behavior in
field studies or in experimental settings ex-
ceed market interest rates, yet they show sig-
nificant variability in the estimates and suffer
from numerous challenges that tend to bias
the estimates upward (Frederick,
Loewenstein, and O’Donoghue 2002). While
there are fewer studies in developing coun-
tries, the ones that exist point to additional

challenges of constrained credit markets and
their implications for discounting and bor-
rowing (Pender 1996). To approximate small-
holders’ discount rates in western Kenya we
surveyed lending institutions—banks, micro-
finance institutions, market traders, etc.—in
the research area. The survey also showed
significant variability: the annual interest rate
ranges from 3% to 24%, depending on the
type of loan, amount, and lending institution.
Similar to Pagiola (1996), who studies the
effects of price policy changes on farmers’
incentives to adopt soil conservation meas-
ures in Kenya, we use the discount rate of
10%; however, we also check our results for
the discount rates of 5% to 25%.

Difference in Resource Endowments: Three
Soil Fertility Levels

The wealth of a household can also be mea-
sured by its natural resource endowment.
Farms with better soil fertility enjoy higher
maize yields that may translate to higher
profits and assets. Moreover, richer house-
holds are found to be more patient (implying
lower discount rates; Pender 1996; Tanaka,
Camerer, and Nguyen 2010). To account for
the difference in resource endowments, we
vary the initial soil carbon stock: c0 ¼ 14.00,
19.12, and 36.13 Mg/ha. The values corre-
spond to farms with depleted, medium-
fertility, and fertile soils. These are the 5th,
50th, and 99th-percentile of the distribution of
soil carbon stocks on maize plots in the three
survey villages closest to the chronosequence
sites.

All prices are quoted in U.S. dollars using
the 2011/12 average exchange rate of 84
Kenyan Shillings (KES) per 1 U.S. dollar
(USD). Values for the agronomic and eco-
nomic variables together with their sources
are summarized in table 4.

Table 3. Empirical Distribution of Prices

Variable Mean Median St. Dev. 25% 75% N
l med r

Price of maize, p ($/Mg) 349 331 95 265 397 120
Price of nitrogen fertilizer, n ($/Mg) 4,346 4,434 1,737 3,251 5,291 190
Value of crop residues, q ($/Mg) 65 58 52 24 94 144
Maize production cost, m ($/ha) 445 375 283 290 516 309

Note: Data from the household survey.

17 We recognize the difference between land rental value and
the longer-term value of owned land, as well as other limitations
of the hedonic analysis (Palmquist 2005). We use this strategy to
approximate average opportunity cost of land in the area.

18 Specific energy, energy per unit mass that is often used for
comparing fuels, of mixed fuel and maize stover and cobs in west-
ern Kenya is very similar (Torres-Rojas et al. 2011). It is 17.2 MJ/
kg for mixed wood, 17.3 MJ/kg for maize stover and 16.9 MJ/kg
for maize cobs.
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Results and Discussion

The empirical implementation of the bioeco-
nomic model maximizes the discounted net
present value of maize production over a
fifty-year horizon, which is defined as the sum
of the discounted net revenue from maize
production over the interval t ¼ 0; 1; . . .;T
�1 and a final function in period t¼T. We as-
sume that the infinite-horizon problem as-
ymptotically converges to the full steady-
state values. We approximate this conver-
gence in a finite-horizon problem with the fi-
nal function WðcTÞ ¼ � 1þd

d ðcss � cTÞ2, which
penalizes any actions that would deplete soil
carbon as t gets closer to T.

The solution of our bioeconomic model
results in the optimal decision rules for the
two management variables—nitrogen input
(ft) and share of residues (at)—and the associ-
ated values of soil carbon (ct) and maize yield
(yt). We first determine the steady state of
the infinite-horizon problem, which can be
compared to the terminal carbon stock in the
finite-horizon problem, cT. We then run the
model with the average values for f and a

from the household survey to approximate
the current practices of farmers in western
Kenya and compare the results to the optimal
decision rules when the model maximizes the
discounted net revenue over 50 years. We ex-
amine the sensitivity of the infinite-horizon
steady state values to discount rate, carbon
content of maize residues, and prices to sug-
gest why the current practices of farmers in
Kenya diverge from the optimal practices.
Finally, we discuss the value of soil carbon.

Steady-State Analysis

Looking at the steady-state equilibrium
answers the question whether the optimal
management strategies would ever be sus-
tainable ad infinitum. For the steady-state
equilibrium to exist, we need ft ¼ f > 0 and
at ¼ a > 0. The functional forms in equa-
tions 11 and 12 and ctþ1 ¼ ct ¼ c imply the
following first order conditions:

ð13Þ ½pþ qkð1� aÞ þ qkABðaFkyðc; f ÞÞB�1

aFk�½cf þ 2cff f þ ccf c� � n ¼ 0;

Table 4. Parameter Values in the Bioeconomic Model

Variable Description Value Unit Source

Maize yield functiona

c0 Constant �0.810 – Chronosequence experiment
cc Coefficient on ct 0.113 – Chronosequence experiment
ccc Coefficient on c2

t �0.000413 – Chronosequence experiment
cf Coefficient on ft 27.038 – Chronosequence experiment
cff Coefficient on f 2

t �41.295 – Chronosequence experiment
ccf Coefficient on ctft �0.218 – Chronosequence experiment
Soil carbon equation
D Rate of soil carbon loss 0.11 – IPCC (2003); Kimetu et al. (2009)
A Carbon plant input parameter 2.40 – Chronosequence, ROTHC-26.3
B Carbon plant input parameter 0.52 – Chronosequence, ROTHC-26.3
k Maize residues to grain ratio 1.50 – Chronosequence experiment
F Carbon content of maize residues 0.43 – Latshaw and Miller (1924)
Prices
p Price of maize 331 $/Mg Market and household surveys
n Price of nitrogen fertilizer 4,434 $/Mg Market and household surveys
q Value of crop residues 58 $/Mg Household survey
m Maize production cost 375 $/ha Household survey
d Discount rate 5, 10, 15, 20, 25 % Market survey
Initial conditions
c0 C stock in depleted soils 14.00 Mg/ha Household survey

C stock in medium-fertility soils 19.12 Mg/ha Household survey
C stock in fertile soils 36.13 Mg/ha Household survey

Note: Superscript adenotes the following: to account for fixed effects in the estimation of the production function following equation (11), we add the average

of coefficients for each of the fixed effects category (farm, year, treatment, year-treatment) to the coefficient on the constant term.
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ð14Þ kABFðaFkyðc; f ÞÞB�1 � ð1þ dÞq ¼ 0;

ð15Þ ½pþ qkð1� aÞ þ qkABðaFkyðc; f ÞÞB�1

aFk�½cc þ 2ccccþ ccf f �

� ðdþDÞqk ¼ 0;

ð16Þ AðaFkyðc; f ÞÞB �Dc ¼ 0:

It can be shown that the steady-state stock
of soil carbon, css, will be locally stable if and
only if jh0ðcssÞj < 1, where hðct; ft; atÞ � ð1
�DÞct þAðatFkyðct; ftÞÞB (Conrad 2010).
Given the parameters in table 4, we can si-
multaneously solve equations (13), (14), (15),
and (16) to get the endogenously determined
equilibrium values for rate of nitrogen appli-
cation, share of maize residues, and soil car-
bon stock (see table 5). For d ¼ 10%, the
steady-state values are fss ¼ 0.13 Mg/ha, ass ¼
0.54, css ¼ 25.63 Mg/ha, and the correspond-
ing yss ¼ 3.91 Mg/ha. The equilibrium value
of soil carbon stock, css ¼ 25.63 Mg/ha, is the
same as the long-term equilibrium value of
soil carbon obtained with the Rothamsted
Carbon Model. Both fss ¼ 0.13 Mg/ha and ass

¼ 0.54 are higher than the current farming
practices in western Kenya, and the equilib-
rium maize yield yss¼ 3.91 Mg/ha is more
than double the average yield reported in the
household survey.

Current Practices vs. Optimal Decision Rules

Running the model with the average values
for f¼ 0.018 Mg/ha and a ¼ 0:47 from the
household survey is instructive for the cali-
bration of the model and to observe the
change in soil carbon if current practices are
preserved. Not surprisingly, the soil carbon
stock rapidly declines from the initial levels
to 10.70-14.00 Mg/ha after thirty-five years
and corresponds to maize yields of 0.78–1.11
Mg/ha (figure 3). Similar carbon stocks and
maize yields are observed in the household

survey. Soil carbon stocks are lower than
19.12 Mg/ha for half of the households in the
three villages closest to the chronosequence
farms, where farmers reported the median
maize yield of 1.31 Mg/ha on plots where we
collected soil samples in the long rains of
2011 (the household-level annual average
maize yield is 1.65 Mg/ha as described in
Berazneva et al. 2018a). As a result, small-
holder farmers in Kenya “cultivate marginal
soils with marginal inputs, produce marginal
yields, and perpetuate marginal living and
poverty” (Lal 2004, p. 1626).

We then allow the model to maximize the
discounted net revenue over fifty years with
d ¼ 10%. For farms with different resource
endowments, the values for soil carbon, nitro-
gen input, and share of residues in this finite-
horizon problem converge to the steady-state
values of the infinite-horizon problem within
the first thirty-five years (tables 5 and 6).
Figure 4 shows the time paths for soil carbon
stock and their convergence to the steady
state of 25.63 Mg/ha. For farms with depleted
and medium-fertility soils, soil carbon stock
increases; for farms with fertile soils, how-
ever, it declines from c0 ¼ 36:13 Mg/ha to
ct¼ 35 ¼ 25.76 Mg/ha, with the largest de-
crease in the first ten years. This is consistent
with previous research. Following land con-
version from forests to agricultural land in
the same sites, Kinyangi (2008) finds signifi-
cant loss of soil carbon stock during the first
eleven years of continuous maize cultivation
even with additions of mineral fertilizer. On a
global scale, Davidson and Ackerman (1993)
find that between 20% and 40% of soil car-
bon is lost following conversion to agriculture
in various ecosystems worldwide, with most
of this loss occurring within the first few years
after conversion. On the other hand, soil car-
bon sequestration reaches saturation for most
of the land management technologies in the
first twenty-five years (WB 2012). This is true
in our analysis. Over first twenty-five years,

Table 5. Steady-State Values: Changing Discount Rate d

Variable d ¼ 5% d ¼ 10% d ¼ 15% d ¼ 20% d ¼ 25%

Share of residues, ass (0–1) 0.84 0.54 0.38 0.28 0.21
Nitrogen input, fss (Mg/ha) 0.11 0.13 0.14 0.15 0.16
Carbon stock, css (Mg/ha) 33.28 25.63 20.76 17.40 14.95
Maize yield, yss (Mg/ha) 4.17 3.91 3.74 3.58 3.53
Value of carbon, kss ($/Mg) 168 138 119 105 95

Note: Steady-state values are from a simultaneous solution of equations (14), (13), (15), and (16), given the parameters in table 4. We vary the discount rate:

d ¼ 5; 10; 15; 20; 25%.
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the soil carbon stock on farms with depleted
soils increases by 11.11 Mg/ha, with an aver-
age annual increase of 444 kg/ha of carbon.
And for farms with medium soil fertility, the
average annual increase is 249 kg/ha. These
two rates are similar to 374 kg/ha, the average
annual soil carbon sequestration rate from
the use of crop residues for soil fertility man-
agement across the 46 studies in Sub-Saharan
Africa (WB 2012).19

Figure 4 also shows the time paths for
maize yields and their convergence to the
steady-state level of 3.91 Mg/ha. This equilib-
rium maize yield is similar to the average
yields from the researcher-managed chrono-
sequence plots (table 1). Using the data from
the nearby Vihiga, Kakamega, and Teso dis-
tricts and simulations of the soil-crop dy-
namic model of nutrient balances
(DYNBAL), Tittonell et al. (2006, 2007) also
find that maize grain yields increase with in-
creasing contents of soil carbon and nitrogen,
with the potential maize grain yields varying
between 10.8 and 11.4 Mg/ha. Their yields
are much higher than the yields shown by our
model. In addition to the soil-crop interac-
tions, we also consider the socio-economic

constraints, such as high prices of external
inputs, competing uses for maize residues,
and farmers’ time preferences. Hence, our
results are more reflective of both biophysical
and socio-economic constraints on produc-
tion, and offer economic potential for
improvements in yields. We note, however,
that even this higher equilibrium yield may
not be sufficient to feed a large family with
land holdings less than one hectare.

Reaching and sustaining the steady-state
values of soil carbon and corresponding
maize yields requires different initial man-
agement strategies for the farms with differ-
ent soil fertility (figure 5). For farms with
depleted and medium-fertility soils, the opti-
mal rate of nitrogen input and share of resi-
dues are high from the beginning: f0 ¼ 0:16
Mg/ha and a0 ¼ 0:64 for farms with depleted
soils and f0 ¼ 0:15 and a0 ¼ 0:59 for farms
with medium-soil fertility. Maintaining high
maize yields on farms with fertile soils is,
however, initially possible with lower rates: f0

¼ 0:10 Mg/ha and a0 ¼ 0:47. As soil carbon
stock declines, higher applications rates are
required (table 6). Table 6 also shows that in
order to achieve higher carbon stocks and
maize yields on farms with depleted and
medium-fertility soils, substantial quantities
of both resources (fertilizer and maize resi-
dues) are required annually. If the annual
applications were to end, soil carbon and
maize yields would eventually decline. Using

Figure 3. Time paths for soil carbon stock ct (Mg/ha) and maize grain yield yt (Mg/ha) corre-
sponding to current farming practices on farms with different initial resource endowments

Note: Time paths are from the model simulation. Current farming practices are the average values for nitrogen fertilizer (f ¼ 0.018 Mg/ha) and share of resi-

dues (a ¼ 0:47) observed in the household survey. Depleted, medium-fertility, and fertile soils correspond to the initial stock of carbon c0¼14.00, 19.12, 36.13

Mg/ha, respectively.

19 The report’s calculation of the average carbon sequestration
rate is based on estimating the cost-effectiveness of the land
management practices, assuming the discount rate of 9% and the
adoption period of twenty-five years (WB 2012).
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the chronosequence data, Güere~na et al.
(2016) show increases in maize yields with
significant applications of organic resources.
The residual effects of organic amendments,
however, disappear after several years with
no applications, suggesting that high input
levels of organic matter must be sustained to
maintain yields and to prevent soil fertility
decline. This is true for many sustainable ag-
ricultural practices: storage of carbon in soils
is volatile and leads to re-emission into the
atmosphere if land management practices are
changed (WB 2012). The risk of nonperma-
nence, however, is lower if such practices re-
sult in more profitable farming systems
overall.

We also observe a difference in the present
value of net revenue from a representative
hectare of land between the farms with differ-
ent initial soil fertility (table 6). The net reve-
nue is greatest for farms with the best initial
conditions (6,870 $/ha)—farms with high
starting values of soil carbon stock. This high-
lights the importance of an initial natural re-
source base for maize yields and consequent
farmer livelihoods: high initial carbon stocks
allow for maintaining soil fertility over time
with lower initial rates of costly external
inputs, while low initial carbon stocks require
substantial fertilizer applications from the
start, in the range of 150–160 kg/ha. Without
annual applications of fertilizer and organic
resources, however, farmers may find them-
selves in self-reinforcing “soil degradation
poverty traps” (Marenya and Barrett 2009;
Stephens et al. 2012; Barrett and Bevis 2015).
The finding also underscores the importance
of considering an initial natural resource base
when designing cost-effective policies and
programs and offering targeted solutions to
farmers with heterogeneous resource
endowments.

Reasons for Divergence

The question is then “Why do the optimal
practices, as shown in our model, diverge
from the current practices of farmers in west-
ern Kenya?” There are at least three possible
explanations: high discount rates, information
barriers, and imperfect markets, which we ex-
plore via the sensitivity analysis contained in
tables 5, 7, and 8.

Farmers’ investments in long-term soil re-
source conservation is necessarily influenced
by their time and risk preferences. High rates
of time preference, for example, can lead toT
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lower than optimal steady-state stocks of re-
newable resources and faster depletion rates
of non-renewable resources (Hotelling 1931;
Clark 1990). Uninsured risk has also been
shown to be a binding constraint on farmer
investment (Shively 2001; Karlan et al. 2014).
Table 5 shows the steady-state values of soil
carbon stocks for the discount rate of 5%,
10%, 15%, 20%, and 25%. As expected, the
equilibrium value of soil carbon stock is the
highest with the lowest discount rate (css ¼

33.28 Mg/ha with d ¼ 5%) and decreases as
the discount rate increases (css ¼14.95 Mg/ha
with d ¼ 25%). Similar values for the soil
carbon stock are observed in the household
survey. The initial soil carbon stock levels (c0

¼ 14.00, 19.12, and 36.13 Mg/ha) in the opti-
mization model correspond to the 5th, 50th,
and 99th-percentile of the distribution of soil
carbon stocks on maize plots in the survey. If
farmers are indeed dynamic optimizers, then
our results suggest that the implied discount

Figure 4. Time paths for optimal soil carbon stock ct (Mg/ha) and maize grain yield yt (Mg/ha)
on farms with different initial resource endowments

Note: Time paths are from the model optimization, using d ¼ 10% and median prices. Depleted, medium-fertility, and fertile soils correspond to the initial

stock of carbon c0¼14.00, 19.12, 36.13 Mg/ha, respectively.

Figure 5. Time paths for optimal rates of nitrogen fertilizer ft (Mg/ha) and share of residues at

(0–1) on farms with different initial resource endowments

Note: Time paths are from the model optimization, using d ¼ 10% and median prices. Depleted, medium-fertility, and fertile soils correspond to the initial

stock of carbon c0¼14.00, 19.12, 36.13 Mg/ha, respectively.
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rates that correspond to the observed (field)
soil carbon levels are in the range of 5% to
25%. It is likely that farmers in western
Kenya are heterogeneous with respect to
their rate of time preferences so that their ag-
ricultural practices result in different stocks
of the natural resources. This is consistent
with other empirical studies that demonstrate
the inverse relationship between discount
rates and household profits and assets
(Pender 1996; Tanaka, Camerer, and Nguyen
2010). Moreover, if land tenure were insecure
and, following Goldstein and Udry (2008),
we modeled the likelihood of losing land as a
Poisson process, the hazard rate would need

to be added to the rate of time preference, in-
creasing the effective discount rate.

Another explanation is in information-
related barriers (Foster and Rosenzweig
1995). Some recent evidence suggests that
farmers across SSA do not significantly vary
input application rates according to perceived
soil quality (Sheahan and Barrett 2017;
Berazneva et al. 2018b). Smallholder farmers
may not have adequate information about
sustainable soil fertility management and
therefore underestimate the benefits of leav-
ing organic resources on the fields. Suppose
farmers underestimate the importance of
maize residues so that F, carbon content of

Table 7. Steady-State Values: Changing Carbon Content of Maize Residues F for d 5 10 and
20%

Variable d ¼ 10% d ¼ 20%

F¼ 0.43 F¼ 0.38 F¼ 0.33 F¼ 0.43 F¼ 0.38 F¼ 0.33

Share of residues, ass (0–1) 0.54 0.50 0.45 0.28 0.25 0.22
Nitrogen input, fss (Mg/ha) 0.13 0.14 0.15 0.15 0.16 0.16
Carbon stock, css (Mg/ha) 25.63 22.70 19.73 17.40 15.35 13.29
Maize yield, yss (Mg/ha) 3.91 3.81 3.73 3.58 3.56 3.42
Value of carbon, kss ($/Mg) 138 140 141 105 106 107

Note: Steady-state values are from a simultaneous solution of equations (14), (13), (15), and (16), given the parameters in table 4. We vary carbon content of

maize residues: F ¼ 0:43; 0:38; 0:33.

Table 8. Steady-State Values: Changing Price of Maize p, Price of Nitrogen n, and Value of
Crop Residues q for d510%

Variable p;n;q ¼ p; n; q ¼ p;n;q ¼ p;n;q ¼ p; n; q ¼ p; n; q ¼
l� 0:5r l� 0:25r med l lþ 0:25r lþ 0:50r

Share of residues, ass (0–1) 0.73 0.56 0.54 0.46 0.39 0.35
Nitrogen input, fss (Mg/ha) 0.13 0.14 0.13 0.15 0.15 0.16
Carbon stock, css (Mg/ha) 31.28 26.49 25.63 23.58 21.61 20.20
Maize yield, yss (Mg/ha) 4.24 4.05 3.91 3.97 3.85 3.86
Value of carbon, kss ($/Mg) 111 128 138 143 158 174

Variable p; q ¼ med p;q ¼ med p;n;q ¼ p;n ¼ med p; n ¼ med
n ¼ 1:25med n ¼ 0:75med med q ¼ 1:25med q ¼ 0:75med

Share of residues, ass (0–1) 0.71 0.41 0.54 0.38 0.82
Nitrogen input, fss (Mg/ha) 0.09 0.17 0.13 0.15 0.11
Carbon stock, css (Mg/ha) 28.42 22.86 25.63 21.04 32.55
Maize yield, yss (Mg/ha) 3.60 4.11 3.91 3.82 4.12
Value of carbon, kss ($/Mg) 152 124 138 145 130

Note: Steady-state values are from a simultaneous solution of equations (14), (13), (15), and (16), given the parameters in table 4 and assuming d ¼ 10%. In

the top panel, we show the steady-state values of ass, fss, css, yss, and kss when we use either median (med) or mean (l) values for p, n, and q, or decrease/in-

crease prices by subtracting/adding 50% or 25% of the respective standard deviation (r) from the mean values of p, n, and q. For each price, l, med, and r
are from their empirical distributions as observed in the household survey (table 3, online supplementary appendix A.4). p ($/Mg): med ¼ 331, l ¼ 349, r ¼
95. n ($/Mg): med ¼ 4,434, l ¼ 4; 366; r ¼ 1; 737. q ($/Mg): med ¼ 58, l ¼ 65, r ¼ 52. In the bottom panel, we keep the price of maize p at its median value,

and increase or decrease either price of nitrogen n or value of crop residues q by 25% from its median value.
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residues, is believed to be lower than mea-
sured. Table 7 shows the steady-state values
of soil carbon for three different values of F
for the discount rates of 10% and 20%. The
equilibrium value of soil carbon stock with
F¼ 0.33 (0.10 lower than measured) is 19.73
Mg/ha for d ¼ 10% and 13.29 Mg/ha for d ¼
20%. Similar values of soil carbon stock are
also observed in the household survey. This
information-barrier explanation is plausible
as public agricultural extension programs,
one of the main sources of agricultural infor-
mation in Kenya, have been found to have
limited impact on agricultural technology
adoption and have also been criticized for
their poor quality (Aker 2011). Since infor-
mation is rarely costless and symmetric in de-
veloping countries, information constraints
can be an important barrier to adopting soil
conservation practices.

Another explanation for the divergence be-
tween current and optimal management prac-
tices lies in imperfect capital markets and
farmers’ liquidity constraints. Financial mar-
ket imperfections can hinder optimal agricul-
tural investments by smallholder farmers
(Beaman et al. 2014), and cash liquidity con-
straints and poverty in assets can also be cor-
related with higher rates of time preference
(Holden, Shiferaw, and Wik 1998). While our
model does not explicitly consider imperfect
markets or impose any constraints on capital,
the prices used in our analysis reflect some
market imperfections (small quantity premi-
ums, travel costs, local availability, and other
potential transaction costs that influence cur-
rent practices). We can also use additional in-
formation from the empirical distributions of
prices in the market and household surveys.
Assuming d¼ 10%, the top panel of table 8
shows the steady-state values of ass, fss, css,
yss, and kss when we use either median (med)
or mean (l) values for p, n, and q, or de-
crease/increase prices by subtracting/adding
50% or 25% of the respective standard devia-
tion (r) from the mean values of p, n, and q
(l� 0:5r; lþ 0:5r; l� 0:25r, or lþ 0:25r).
As all prices go up, the steady-state soil car-
bon level decreases as expected (to 21.61
when all prices increase by 25% of their stan-
dard deviations and to 20.20 Mg/ha if all pri-
ces increase by 50% of their standard
deviations, similar to the levels of soil carbon
observed in the household survey). To high-
light a trade-off between the use of nitrogen
fertilizer and maize residues, in the bottom
panel of table 8, we keep the price of maize

(p) at its median value, and increase or de-
crease either price of nitrogen (n) or value of
crop residues (q; by 25% from its median
value). As the price of nitrogen increases, the
steady-state value of fss goes down and the
steady-state value of ass goes up (and the
other way around). In our household survey,
richer farmers, who may be less liquidity con-
strained, apply more nitrogen fertilizer but
less crop residues to achieve higher yields as
compared to poorer farmers.20

Value of Carbon

Our model also allows us to assign monetary
value to soil carbon thus quantitatively dem-
onstrating the importance of natural resour-
ces as primary factors of production in
smallholder agriculture. In steady state the
shadow price of soil carbon is given by equa-
tion (15). With median prices, equation (15)
implies kss between $95 and $168/Mg,
depending on the discount rate (table 5). The
shadow price of soil carbon is the present
value of one metric ton (Mg) of soil carbon
when maintained for the rest of time. It is
considerably higher than the net marginal
benefit of an additional unit of soil carbon in
maize production, pðcc þ 2ccccss þ ccf fssÞ ¼
$21/Mg, showing the residual effects of
increases in soil fertility and confirming the
benefit of the dynamic analysis.

Our steady-state shadow price of soil car-
bon, $95 to $168/Mg of carbon or $27 to
$47/Mg of carbon dioxide equivalent
(CO2e), is also higher than the majority of
the existing national and sub-national car-
bon pricing instruments. Carbon dioxide
prices in the European Union Emissions
Trading System remained in the range of $5
to $9/Mg of CO2e in 2013 (WB 2014), and
the average price for forestry offsets in 2012
was $8/Mg of CO2e (Peters-Stanley,
Gonzalez, and Yin 2013). It is also similar
to $35/Mg of CO2e, the inherent value of
soil organic carbon, estimated as the
“hidden cost” of soil carbon restoration
though biochemical transformation of bio-
mass carbon in Lal (2014).

20 Richer farmers are those in the three villages closest to the
chronosequence farms with the asset index, derived from a factor
analysis on household durables and housing quality (Sahn and
Stifel 2003), in the top quartile of the distribution. These farmers
apply, on average, 57 kg/ha of nitrogen fertilizer, with some plots
receiving 100–154 kg/ha.
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Conclusion

Sustainable management of soil resources is
one of the main environmental and develop-
ment challenges in many developing coun-
tries. We examine this challenge in the
context of smallholder maize systems of west-
ern Kenya and one “climate-smart” agricul-
tural practice—the combined application of
mineral fertilizer and organic resources—by
estimating the economic potential for maize
yields and soil carbon sequestration. Our
findings show that regardless of the initial soil
fertility levels it is possible to considerably in-
crease maize yields and achieve 3.53–
4.17 Mg/ha, while increasing or maintaining
stocks of soil carbon. Farms with better initial
resource endowments (more fertile soils) re-
quire smaller application rates of fertilizer and
residues at the outset and, as a result, enjoy
higher profits. Achieving high application
rates of fertilizer and maize residues in small-
holder systems, however, requires some addi-
tional support and investments. While
fertilizer use in Kenya, and elsewhere in SSA,
is greater and more widespread than is often
acknowledged, application rates are highest in
countries with input subsidy programs
(Sheahan and Barrett 2017). Maize residues
(and other organic resources more generally)
can be used for soil fertility management only
when alternative sources for competing uses
are identified and made available. Removing
crop residues for fodder and fuel are prevail-
ing practices throughout the developing world
in the tropics and subtropics (Lal 2006). In the
absence of readily available and affordable
substitutes, removing crop residues from agri-
cultural fields contributes to the depletion of
soil fertility, thus decreasing agronomic pro-
ductivity and reducing fertilizer efficiency.

We also find that the long-term equilibrium
levels of soil carbon are highly dependent on
the discount rate used (with the implied dis-
count rates of 5% to 25%), carbon content of
crop residues (if farmers underestimate the
importance of leaving organic resources for
long-term soil fertility), and prices that proxy
for potential market imperfections and man-
agement costs. These different equilibrium
levels of soil carbon point to the role of farm-
ers’ time and risk preferences, information-
related barriers, and imperfect markets in ag-
ricultural production and natural resource
management, and can explain the divergence
between the optimal management practices

and the current practices observed in the
household survey. Our results show that prof-
itability alone is not a sufficient condition for
farmers to adopt and maintain profitable sus-
tainable practices. The reasons for divergence
between the optimal and current practices,
therefore, offer guidance for the design, im-
plementation, and targeting of government
policies and programs to increase yields and
optimally manage soil resources in Kenya.
Such policies and programs need to focus on
relieving existing financial and information
constraints and correcting market failures,
and, given the existing heterogeneity in soil
resource endowments, target specific groups
of farmers. They could, for example, include
fertilizer subsidies, extension services, the es-
tablishment of biofuel plantations on de-
graded and marginal lands, improving access
to credit, and reducing demand for fuels by
increasing fuel use efficiency with improved
cookstoves. Particular attention also needs to
be paid to policy-induced changes in farmers’
incentives to adopt sustainable practices
(Pagiola 1996).

Moreover, our analysis has implications for
global climate policy debates in terms of un-
derstanding the potential of soil carbon se-
questration in mitigating climate change. We
show that in the western Kenyan highlands
considerable amounts of carbon can be se-
questered over twenty-five years. The soil
carbon stock changes for depleted and
medium-fertility soils equate to an average
annual increase in soil carbon of 440 and 240
kg C/ha, respectively. The equilibrium value
of soil carbon is also high: it ranges between
$95 and $168/Mg of carbon or $27 and $47/
Mg of carbon dioxide equivalent, depending
on the discount rate used. These estimates
highlight the significant local private benefits
of carbon sequestration in the form of soil
fertility improvements and increased maize
yields (or a significant opportunity cost to soil
mismanagement) and suggest a lower bound
on the societal value of soil carbon, which
should also include the monetary equivalent
of all ecosystem services provisioned by a
unit of soil carbon (Lal 2014). We note, how-
ever, the risk of nonpermanence of many sus-
tainable agricultural practices: soil carbon
gets released into the atmosphere if land
management practices change. Making sus-
tainable agricultural practices more profitable
is, therefore, imperative to help farmers not
only adopt but also maintain such practices.
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Smallholder systems in western Kenya and
elsewhere are inherently complex: farmers
grow multiple crops, rear livestock, often
hold off-farm jobs, and pursue other liveli-
hood strategies. Our research, however, con-
siders only maize cropping in western Kenya
during the main agricultural season and one
“climate-smart” agricultural practice; thus,
our results should be interpreted within this
context. Leaving crop residues on the fields
and incorporating them with conventional
tillage is the most common soil conservation
practice in the research area; however, it may
not be the one with the highest potential to
sequester carbon. Reviewing existing re-
search on conservation tillage, Busari et al.
(2015), for example, note that zero tillage has
the highest carbon sequestration potential
among different tillage practices. And Stavi
and Lal (2013) identify agroforestry and bio-
char applications as the most promising
options to sequester large amounts of carbon
over the long run. Conservation practices,
however, are context-specific and may not be
applicable under all circumstances.
Therefore, more empirical estimates of the
potential for carbon sequestration, improve-
ments in yields, and the value of carbon are
needed using other conservation practices
and from different settings. In this article, we
also consider net revenue maximization as
the objective of farming households and soil
carbon as the state variable. To account for
other objectives of farming households and
the existing socio-economic and biophysical
constraints, the objective function could be
further extended to incorporate, for example,
the goal of food security; additional con-
straints and farming practices can also be in-
cluded. Moreover, the model set-up allows to
introduce participation in carbon offset mar-
kets to receive payments for carbon seques-
tration services, as in Wise and Cacho (2011).
The income provided by carbon payments
could partially counteract the effects of high
discount rates and we expect in this scenario
it would be possible to achieve even higher
soil carbon stocks and corresponding maize
yields.

Supplementary Material

Supplementary material are available at
American Journal of Agricultural Economics
online.
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