nature food

Article

https://doi.org/10.1038/s43016-023-00694-0

Integrated biochar solutions can achieve carbon-neutral staple crop production

In the format provided by the authors and unedited

1 Supplementary Note 1: GHG emissions from staple food production in China in 2018 (BAU)

2 Life cycle assessment (LCA) was used to evaluate GHG emissions from different scenarios. (1) Goal and scope: LCA was used in this study to evaluate life-inventory GHG emissions (carbon footprint, 3 4 CF) from staple food (rice, wheat and corn) production in China and how different mitigation measures can reduce the CFs and achieve carbon neutrality; (2) functional unit: we adopted an area-based 5 6 functional unit in the LCA, i.e., how much GHG is emitted from production of staple food per hectare 7 (kg CO₂-eq ha⁻¹) under BAU and the mitigation scenarios; (3) life-cycle inventory: GHG emissions 8 from production of various agricultural inputs, crop field cultivation and straw biomass burning and 9 straw pyrolysis were included in this study; (4) life-cycle impact assessment: we aimed to evaluate the 10 global warming potentials (GWPs) associated with GHG emissions under BAU and how mitigation 11 scenarios can reduce the GWPs and achieve carbon neutrality.

12 The system boundary of quantifying GHG emissions from life-cycle production of rice (*Oryza* 13 *sativa*), wheat (*Triticum aestivum*) and corn (*Zea mays*) was set from production of agricultural inputs 14 to harvesting of crop grains in BAU in 2018. Our assessment on quantification of GHG balance is on a 15 territorial basis using the life-cycle perspective. The carbon (C) footprint (kg CO₂-eq ha⁻¹) was 16 calculated using the following equation:

17

Carbon footprint = $\sum_{i=1}^{m} AI_{CO_2} + \sum_{j=1}^{n} FO_{CO_2} + \sum_{g=1}^{k} BB_{CO_2}$

where, AI_{CO2} denotes GHG emissions associated with agricultural inputs (AI) production and 18 19 transportation, including fertilizers, diesel oil, plastic film and pesticides. They were calculated by 20 multiplying their application quantities by their individual GHG emission factors (Supplementary Table 1). We determined the synthetic and organic N application rates for each crop following the approach 21 developed by Huang et al.¹ (Supplementary Table 2). We used production coefficients, i.e. the required 22 23 amount of diesel oils or pesticides per units of crop grain, to estimate the average rate of diesel oils and pesticides for each staple crop². FO_{CO₂} denotes the emissions from farm operation sector (FO), such as 24 soil emissions of CH4 and N2O and soil organic carbon (SOC) stock change, and GHG emissions from 25 26 irrigation activities. We used the Tier 1 method reported in the 2006 Intergovernmental Panel on Climate 27 Change (IPCC) to estimate CH₄ emissions from paddy fields (Supplementary Table 3)³. For CH₄ emissions from wheat and corn cultivation, we assumed that 1 kg CH₄-C was absorbed per hectare per 28 year². The SOC change rates were extracted from Zhao et al.⁴, which were evaluated through an 29 30 extensive review of soil analyses that were related to SOC changes in the topsoil (0-20 cm) of cropland in China from 1980 to 2011 (Supplementary Table 4). We used the empirical models established by 31 Chen et al.⁵ based on the response of reactive N (Nr) losses to soil N surplus to evaluate N₂O emissions 32 from field staple crop cultivation: 33

- 34
- 35
- 36
- 37

- 38 $\Box 0.74 \times \exp(0.011 \times N_{surplus})$ for rice cultivation (p<0.01, R²=0.46)
- 39 N₂O emissions = $-10.54 \times \exp(0.0063 \times N_{surplus})$ for wheat cultivation (p<0.01, R²=0.44)
 - $1.13 \times \exp(0.0071 \times N_{surplus})$ for corn cultivation (p<0.01, R²=0.50)

where N_{surplus} denotes N surplus, defined as N application rate minus the amount of N taken up by 41 aboveground crop biomass. The above-ground N uptake was calculated using the approach by Yan et 42 al.⁶. The N₂O emissions induced by organic fertilizer (human and livestock manure) application were 43 estimated by multiplying the application rate by the same emission factor $(EF=1.0\%)^2$. BB _{CO₂} denotes 44 GHG (CH₄ and N₂O) emissions from domestic and open burning of crop straw biomass, which were 45 estimated by multiplying the burning amounts by the GHG emission factors (Supplementary Tables 5 46 and 6). Previous study reported that, on average, approximately 44%, 18% and 38% of collected crop 47 residues was retained in the field, used as feed for livestock and being burned, respectively, in China in 48 2018^{7,8}. With improved economic situations and wide use of commercial energy in the countryside, crop 49 straws (~2%) are rarely used as domestic fuels for cooking since 2010s. Moreover, burning straw for 50 household energy has a very low energy conversion efficiency⁷. Therefore, the negligible household 51 energy generated through domestic burning of crop straws was not considered in BAU. Staple straw 52 biomass amount was extracted from previous studies^{7,8}. See Supplementary Figure 1 for GHG emissions 53 from staple food production in China in 2018. 54

55

40

Supplementary Figure 1. GHG emissions from staple food (rice, wheat and corn) production in China
in 2018 (BAU scenario). HLJ, Heilongjiang; HUN, Hunan; JX, Jiangxi; AH, Anhui; JS, Jiangsu; SD,
Shandong; HUB, Hubei; HEN, Henan; GD, Guangdong; GX, Guangxi; SC, Sichuan; HEB, Hebei; JL,
Jilin; YN, Yunnan; LN, Liaoning; IM, Inner Mongolia; XJ, Xinjiang; SSX, Shaanxi; GS, Gansu; GZ,
Guizhou; FJ, Fujian; CQ, Chongqing; ZJ, Zhejiang; SX, Shanxi; HAN, Hainan; NX, Ningxia; TJ,
Tianjin; SH, Shanghai; QH, Qinghai; BJ, Beijing; TB, Tibet.

64		agricultur	ral inputs			
Agricultural	Unit	GHGs emissions	N ₂ O emissions	NO _X emissions	Deferences	
inputs		kg CO ₂ eq unit ⁻¹ input	g N ur	g N unit ⁻¹ input		
N fertilizer	kg N	8.3	0.09	13.47	9,10	
P fertilizer	kg P ₂ O ₅	1.5	0.013	2.16	9	
K fertilizer	kg K ₂ O	0.98	0.017	2.9	9	
Pesticides	kg	18	0.18	14.3	9	
Electricity	kWh	0.95	0.0064	1.3	9	
Diesel oil	kg	3.94	0.09	3.07	11,12	
Organic fertilizer	kg N	11.3	0.11	8.96	11,12	
Plastic film	kg	19	0.19	15.1	11,12	

Supplementary Table 1 Emission factors of GHG and Nr from production and transportation of

Supplementary Table 2 The synthetic N fertilizer and organic fertilizer (human and animal manure)

application rates for rice, wheat and corn cultivation in different provinces in 2018

	Rice (kg	N ha ^{-1})	Wheat (k	g N ha $^{-1}$)	Corn (kg N ha ⁻¹)	
Province	Synthetic fertilizer	Organic fertilizer ^a	Synthetic fertilizer	Organic fertilizer	Synthetic fertilizer	Organic fertilizer
Beijing	209	110	222	117	222	117
Tianjin	253	113	220	98	200	89
Hebei	272	72	242	64	206	54
Shanxi	184	45	203	49	183	44
Inner Mongolia	214	58	197	53	220	60
Liaoning	222	93	206	86	139	87
Jilin	163	43	166	44	156	42
Heilongjiang	126	27	80	17	176	38
Shanghai	307	72	243	57	249	58
Jiangsu	242	53	253	55	248	54
Zhejiang	188	45	201	48	222	53
Anhui	182	59	206	66	172	56
Fujian	142	79	244	68	270	75
Jiangxi	168	70	123	77	119	74
Shandong	254	97	190	109	210	121
Henan	160	28	173	30	208	36
Hubei	148	36	136	33	184	45
Hunan	141	45	151	49	161	52
Guangdong	177	83	215	101	241	113
Guangxi	185	85	105	48	217	100

Hainan ^b	165	67				
Chongging	205	58	187	53	196	55
Sichuan	152	69	107	<u> </u>	169	55 77
Guizhou	171	63	118	47	208	77
Yunan	171	51	147	42	208	80
Tibet	80	52	217	42 85	83	48
Shaanxi	283	52 25	220	19	274	40 24
Gansu	255	98	220	85	324	83
Oinghai ^b	200	70	122	00	170	40
Ningvia			122	83	179	49
Viniiana	287	01	252	54	257	22
лтпjiang	246	46	274	52	290	55

^a "Organic fertilizer" includes human and livestock manure. ^b No rice is cultivated in Qinghai and no wheat and corn are cultivated in Hainan.

Supplementary Table 3 CH₄ emissions from rice paddies under BAU and different scenarios in
 different provinces (Straw-CH₄-N (S1), Biochar-CH₄-N (S2) and IPEG-CH₄-N (S3))

Drovinco	CH	4 emission (k	$g \operatorname{CH}_4 \operatorname{ha}^{-1}$	
	BAU	S 1	S2	S 3
Beijing	257	297	105	137
Tianjin	256	308	76	114
Hebei	249	295	87	128
Shanxi	206	261	65	116
Inner Mongolia	216	272	71	140
Liaoning	207	303	79	128
Jilin	188	285	68	140
Heilongjiang	174	272	59	113
Shanghai	275	335	95	98
Jiangsu	219	262	70	91
Zhejiang	242	300	79	87
Anhui	220	263	73	97
Fujian	300	366	109	114
Jiangxi	296	360	109	114
Shandong	221	276	49	107
Henan	267	314	94	162
Hubei	229	285	71	104
Hunan	298	360	112	114
Guangdong	330	398	124	128
Guangxi	291	378	126	128
Hainan	305	371	113	118
Chongqing	207	273	86	90
Sichuan	207	273	85	106
Guizhou	180	245	70	76
Yunan	191	257	75	87
Tibet	235	304	103	166

Shaanxi	252	301	102	105
Gansu	206	258	70	77
Qinghai ^a				
Ningxia	214	270	67	136
Xinjiang	232	288	80	190

^a No rice is cultivated in Qinghai.

74 Supplementary Table 4 Topsoil (0–20cm) SOC change rates of croplands under BAU and different

75 scenarios in different provinces (kg C ha⁻¹ yr⁻¹) (Straw-CH₄-N (S1), Biochar-CH₄-N (S2) and IPEG-

CH₄-N (S3))

76

			D'			XX 71			0	
Province	BAU ^a		R1ce			wheat			Corn	
		S 1	S2	S3	S 1	S2	S3	S 1	S2	S3
Beijing	166	243	452	365	366	749	605	346	902	711
Tianjin	166	348	885	722	352	705	601	328	827	695
Hebei	166	267	552	438	375	778	627	307	738	587
Shanxi	166	284	561	436	303	530	429	317	693	541
Inner Mongolia	166	289	576	404	281	466	351	381	933	632
Liaoning	-14	239	635	478	261	638	493	264	715	554
Jilin	-14	211	559	370	4	-32	-12	285	774	528
Heilongjiang	-14	192	507	378	137	329	248	324	881	681
Shanghai	268	481	1,019	1,056	514	955	995	478	1,030	1096
Jiangsu	268	426	889	778	465	841	756	409	839	754
Zhejiang	268	433	841	815	441	742	728	390	699	694
Anhui	268	391	743	650	455	809	721	400	800	712
Fujian	268	394	697	730	489	883	934	392	705	757
Jiangxi	268	398	712	746	362	509	530	419	806	868
Shandong	268	407	808	658	481	890	744	416	865	715
Henan	215	336	683	483	423	823	599	357	788	554
Hubei	215	408	894	753	389	693	606	358	726	632
Hunan	215	360	716	754	382	672	710	395	865	939
Guangdong	215	347	666	702	432	819	868	343	670	723
Guangxi	215	366	623	693	295	391	425	389	703	804
Hainan	215	331	609	640						
Chongqing	176	351	655	625	331	546	529	419	868	848
Sichuan	176	377	730	634	353	606	539	416	861	760
Guizhou	176	343	630	611	289	438	431	359	691	687
Yunan	176	363	690	631	280	415	391	396	802	750
Tibet	176	322	569	407	470	910	640	455	977	668
Shaanxi	91	218	516	480	228	455	431	231	579	555
Gansu	91	197	441	529	206	392	464	248	641	798
Qinghai ^a	91	^b			218	426	341	271	725	564
Ningxia	91	235	578	463	195	358	301	312	879	716
Xinjiang	91	237	584	470	283	615	510	314	887	727

77

^a The data were from Zhao et al.⁴. ^bNo crop cultivation

	food and barring in afference provinces in 2010 (and. Sg 91)								
Province	Bio	mass reter	ntion	Bic	mass fee	ding	Bio	mass buri	ning
	Rice	Wheat	Corn	Rice	Wheat	Corn	Rice	Wheat	Corn
Beijing	0.4	29	180	0.1	10	63	0.2	17	102
Tianjin	192	306	758	67	106	264	109	174	430
Hebei	210	7,340	12,156	73	2,552	4,226	119	4,167	6,900
Shanxi	2	933	4,883	1	682	3,569	1	704	3,684
Inner Mongolia	363	833	14,915	266	609	10,902	274	628	11,253
Liaoning	971	4	5,507	601	2	3,409	1,802	7	10,215
Jilin	1,484	1	9,257	919	0.3	5,730	2,752	1	17,170
Heilongjiang	6,107	96	15,617	3,781	60	9,668	11,328	179	28,969
Shanghai	456	66	7	93	13	1	328	47	5
Jiangsu	9,263	7,027	1,819	3,220	2,443	632	5,258	3,989	1,033
Zhejiang	2,214	186	117	451	38	24	1,593	134	84
Anhui	8,276	7,964	3,759	2,877	2,769	1,307	4,698	4,521	2,134
Fujian	1,604	1	69	327	0.1	14	1,154	0.4	50
Jiangxi	9,183	17	102	1,872	3	21	6,609	12	74
Shandong	417	12,832	14,484	145	4,461	5,035	237	7,284	8,222
Henan	1,992	17,772	13,875	692	6,178	4,823	1,131	10,088	7,876
Hubei	9,548	2,422	2,178	1,947	494	444	6,872	1,743	1,567
Hunan	12,002	49	1,256	2,447	10	256	8,638	35	904
Guangdong	4,858	1	300	991	0.2	61	3,496	1	216
Guangxi	2,865	2	1,031	1,329	1	478	3,868	2	1,392
Hainan	589	^a		120			424		
Chongqing	1,247	29	1,087	578	14	504	1,683	40	1,467
Sichuan	4,080	865	4,515	1,892	401	2,093	5,508	1,168	6,094
Guizhou	1,213	123	1,117	563	57	518	1,638	166	1,508
Yunan	1,724	272	3,987	800	126	1,849	2,328	367	5,382
Tibet	1	72	15	1	33	7	2	97	20
Shaanxi	263	1,607	3,063	192	1,175	2,239	198	1,212	2,311
Gansu	8	1,083	2,943	6	792	2,151	6	817	2,220
Qinghai ^a		172	61		126	45		130	46
Ningxia	221	162	1,272	162	118	930	167	122	959
Xinjiang	225	2,404	4,269	165	1,757	3,120	170	1,814	3,221

Supplementary Table 5 The amounts of staple crop residue biomass used for field retention, livestock
 feed and burning in different provinces in 2018 (unit: Gg yr⁻¹)

 a No crop cultivation. The data were from Zhuang et al.⁸.

82 **Supplementary Table 6** Crop residue biomass burning induced GHG and air pollutants emissions

83

(unit: kg Mg⁻¹ biomass)

Straw type	CH ₄	N ₂ O	NO _x	NH ₃	BC ^a	SO ₂	PM _{2.5}
Rice	1.20	0.03	0.99	0.17	0.50	0.64	9.39
Wheat	1.28	0.03	1.09	0.12	0.47	0.74	7.13
Corn	1.66	0.05	1.29	0.21	0.56	0.45	11.3

⁸¹

^a BC means black carbon. References: Liu et al.⁷ and Yang et al.¹⁴.

85 Supplementary Note 2: GHG emissions from the scenario Straw-CH₄-N

The Straw-CH₄-N scenario comprises an increase in crop residues retention in croplands coupled 86 with CH₄ mitigation and a reduction in fertilizer N use. On average, 44% of national staple crops residues 87 88 were retained in the field under BAU, while 20% were used for producing feed for livestock and the 89 remaining part was burned domestically or in the fields. We assumed that all the provincial staple crop 90 residues (82%) were retained in the fields (except for those used as livestock feed) under Straw-CH₄-N. 91 Since no-tillage and straw mulching is not a common practice in China, we assumed that farmers will 92 not adopt no-tillage at large scale in future. Crop straw was therefore incorporated into the soil instead 93 of being retained on the field surface in the Straw-CH₄-N scenario. Besides enhancing crop residue 94 retention, intermittent irrigation regime (at least one drainage) was assumed to be expanded from current 95 75% to 100% to reduce CH₄ emissions from continuously flooded rice paddies under Straw-CH₄-N. In addition, N application rate in Straw-CH4-N was reduced by 15% from that in BAU, considering the 96 97 overuse of N fertilizer in China's croplands⁵.

Increasing crop residue application will affect GHG emissions, crop yield and SOC sequestration,
 which were evaluated based on our meta-analysis results (Figure 2a). We established an empirical model

100 based on the response of N_2O emissions under straw application (y) to straw N input (x):

101

 $y = e^{(0.008x - 0.1968)} \times N_2O_{without-straw}$ (p<0.05, R²=0.14).

Here, $N_2O_{without-straw}$ denotes N_2O emissions without straw application, which was calculated based on straw application rate under BAU. Increasing straw application under Straw-CH₄-N will stimulate CH₄ emissions from paddy fields³, which were evaluated using the Tier 1 method described in the 2006 IPCC guidelines (Supplementary Table 3). The straw application induced SOC sequestration rate was estimated through an empirical model established based on the meta-analysis dataset⁴ (Figure 3b).

In the Straw-CH₄-N scenario, we assumed that all flooded paddy fields adopted intermittent 107 irrigation. On average, intermittent irrigation reduced CH₄ emissions by 52% and increased N₂O 108 emissions by 132% compared to flooded paddy fields^{3,13}. Thus, switching the 25% of paddy fields that 109 are currently under continuously flooded management to intermittent irrigation will reduce total CH₄ 110 emissions by 13%, and increase N₂O emission by 33%. In addition, N application rates for staple crop 111 cultivation in China are generally excessive with the consequences of low nitrogen use efficiency and 112 high reactive N (Nr) losses, and consequently causing a cascade of environmental problems^{5,6}. 113 Numerous studies indicate that with additional knowledge-based N management (e.g., splitting N 114 application), fertilizer N rate can be reduced by 15–20% without impairing crop yields^{5,15}. Therefore, 115 fertilizer N application rate in Straw-CH₄-N was reduced by 15% from that in BAU, coupled with an 116 additional splitting application of N fertilizer to maintain staple crop yields². Additional energy (e.g., 117 diesel) and labor costs were needed for increasing straw incorporation and performing an additional N 118 splitting application compared to BAU, which were also considered in our calculations as descried in 119 Xia et al.². Straw application largely increased CH₄ emissions from paddy fields, which will offset the 120

climate benefit of SOC accrual². Thus, we also calculated the mitigation potential of applying staple straw to upland fields instead of rice paddies. We found that applying all staple straw to wheat and corn fields will reduce GHG emissions approximately by 68 Tg CO₂-eq yr⁻¹. This means that the associated total GHG emissions from staple food production will be 492 Tg CO₂-eq yr⁻¹, which is still far away

125 from carbon neutrality.

We used the meta-analysis approach to calculate the effects of straw (Straw-CH₄-N) and biochar application (Biochar-CH₄-N and IPEG-CH₄-N) on GHG emissions, Nr losses and crop yield (Figure 2a and Supplementary Dataset 1). The database regarding the effects of straw application on CH₄ emissions from paddy field were derived from Liu et al.¹⁶. The descriptions about the meta-analysis can be found in the Methods section.

131

132 Supplementary Note 3: GHG emissions from the scenario Biochar-CH₄-N

In the Biochar-CH4-N scenario, we assumed that all provincial staple crop residues (except for those 133 used as livestock feed) (82%) were converted into biochar through pyrolysis under 500°C before being 134 applied to the fields (Supplementary Table 7), coupled with CH₄ mitigation through intermittent 135 irrigation and a 15% reduction in fertilizer N use under Biochar-CH₄-N. In this study, we assumed that 136 the pyrolysis process in the Biochar-CH₄-N and IPEG-CH₄-N is the same, except that the fate of bio-137 gas and bio-oil was not considered in the Biochar-CH₄-N. Supplementary Figures 2-3 and 138 139 Supplementary Table 12 show the details of the pyrolysis processes and the char recoveries, energy 140 requirements and operating emissions. Under the pyrolysis temperature of 500°C, 1 Mg crop residue of 141 rice, wheat and corn will produce 0.281 Mg, 0.284 Mg and 0.289 Mg biochar, with the biochar-C content 142 of 53% (rice), 62% (wheat) and 58% (corn) (see Supplementary Note 4 for details).

The effects of biochar application on GHG emissions, Nr losses and crop yield were calculated based on our meta-analysis results (Figure 2a). Overall, the effects of biochar application reported in our meta-analysis on crop yield (+11% vs. +10% in Ye et al.¹⁷), SOC contents (+35% vs. +39% in Bai et al.¹⁸) and N₂O emissions (-23% vs. -28% in He et al.¹⁹) are comparable to published regional or global meta-analyses. Biochar application induced SOC sequestration rate was estimated through an empirical model established based on the meta-analysis dataset (Figure 3a).

We also established an empirical model based on the response of N_2O emissions under biochar application (y, kg N ha⁻¹ yr⁻¹) to biochar application rate (x, Mg C ha⁻¹ yr⁻¹):

151

$$y = e^{(-0.0121x - 0.1019)} \times N_2O_{without-biochar}$$
 (p<0.05, R²=0.25).

Here, $N_2O_{without-biochar}$ denotes N_2O emissions without biochar application. Since the effects of biochar application on CH₄ emissions from paddy fields were not affected by biochar application rate (p>0.05), we used the average reduction effect (26.4%) in the calculations. Changes in GHG emissions associated with intermittent irrigation and a 15% reduction in fertilizer N use in Biochar-CH₄-N were calculated using the same method as in Straw-CH₄-N.

157 Additional energy (e.g., diesel) and labor costs were needed for transporting crop straw and biochar

and applying biochar to the field compared to BAU. In China, majority of agricultural products are 158 distributed or transported through land transportation using diesel vehicles, with an average 159 transportation distance of 70 km^{2,20}. Here, we used the parameter published in Yuan et al.²⁰, the diesel 160 consumed factor for road-transportation-used truck which had a carrying capacity of 28 Mg being 4.4 L 161 Mg⁻¹ cargo per 70 km, to calculate the total amounts of diesel oil consumed for crop straw and biochar 162 transportation and distribution. We used the parameter of 4.4 L Mg⁻¹ biochar to calculate the 163 consumption of diesel oil for applying biochar to the soil $(0-10 \text{ cm})^2$. Overall, these additional GHG 164 165 emissions were negligible compared to biochar-induced GHG mitigation potentials (Figure 1).

- 166
- 167

Supplementary Table 7 The amounts of biochar produced from staple crop residues in diff	ferent
provinces in 2018 (unit: Gg yr ^{-1}) (Biochar-CH ₄ -N (S2) and IPEG-CH ₄ -N (S3))	

Province	Ri	Rice W		neat	Co	Corn	
FIOVINCE	S2	S 3	S2	S 3	S2	S 3	
Beijing	0.2	0.1	14	9	85	59	
Tianjin	90	68	144	110	356	277	
Hebei	99	67	3,444	2,370	5,704	3,984	
Shanxi	1	1	490	314	2,564	1,667	
Inner Mongolia	191	94	437	217	7,832	3,943	
Liaoning	830	559	3	2	4,705	3,246	
Jilin	1,268	677	0.1	0.1	7,910	4,326	
Heilongjiang	5,218	3,485	82	56	13,345	9,135	
Shanghai	235	242	34	35	4	4	
Jiangsu	4,346	3,582	3,297	2,744	854	721	
Zhejiang	1,139	1,104	96	94	60	60	
Anhui	3,883	3,127	3,737	3,039	1,764	1,456	
Fujian	825	868	0.3	0.3	36	38	
Jiangxi	4,727	4,972	9	9	53	57	
Shandong	196	136	6,021	4,231	6,796	4,848	
Henan	935	468	8,338	4,220	6,510	3,344	
Hubei	4,914	3,799	1,247	973	1,121	888	
Hunan	6,178	6,499	25	27	646	697	
Guangdong	2,500	2,630	1	1	154	166	
Guangxi	2,015	2,269	1	1	725	837	
Hainan	303	319	^a				
Chongqing	877	837	21	20	764	747	
Sichuan	2,870	2,287	609	490	3,175	2,594	
Guizhou	853	828	87	85	785	781	
Yunan	1,213	1,078	191	171	2,804	2,554	
Tibet	1	0.4	50	23	10	5	
Shaanxi	138	130	844	804	1,608	1,555	
Gansu	4	5	569	668	1,545	1,843	
Qinghai			90	62	32	22	

169	^a No crop cultivation.						
	Xinjiang	118	88	1,262	947	2,242	1,706
	Ningxia	116	85	85	63	668	503

Supplementary Note 4: GHG emissions from the scenario IPEG-CH₄-N 170

Bio-gas and bio-oil produced during biochar production can be used to generate electric power 171 through an integrated biomass pyrolysis and electricity (IPEG) system^{14,21}. This can result in an indirect 172 mitigation of GHG through substitution effects, since the energy (electricity) generated from the IPEG 173 can replace traditional emissions sources, such as coal burning for electricity production (0.95 CO₂-eq 174 kWh⁻¹)². Therefore, besides the direct mitigation potentials of biochar application as shown in the 175 Biochar-CH₄-N, the indirect mitigation effects from energy substitution were also considered in IPEG-176 177 CH₄-N (Supplementary Figure 2). Also, the (IPEG) system was coupled with widely applied CH₄ (intermittent irrigation) and nitrogen (N) mitigation (a 15% reduction in fertilizer N use) measures 178 179 (IPEG-CH₄-N).

180

Supplementary Figure 2. Process flow diagram of the integrated biomass pyrolysis and electricity 181 (IPEG) system. 182

183

The processes of IPEG system are described in the Methods section (see descriptions of the IPEG 184 system for details). It is well known that pyrolysis temperature greatly affects biochar production as well 185 186 as ratio of bio-oil and bio-gas generation. In this study, IPEG system is operated pyrolysis at relatively low to medium temperatures (300-600°C), resulting in a higher yield of pyrolysis oil than syngas. As 187 shown in Supplementary Figure 3, biochar production (varying between 0.25–0.69 Mg Mg⁻¹ straw) and 188 its carbon content (varying between 44-65%) decreased with the increase in pyrolysis temperature from 189 190 300 to 600°C. In contrast, bio-gas production increased clearly with pyrolysis temperature whereas biooil production increased with pyrolysis temperature from 300 to 500°C and then decreased if pyrolysis 191 temperature further increased to 600°C. Yields of the main pyrolysis products (biochar and its carbon 192 content, biogas and bio-oil) under different pyrolysis temperatures are comparable with the results 193 derived from both pyrolysis experiment²¹ and Aspen Plus stimulation study¹⁴. 194

Supplementary Figure 3. Yield of the main pyrolysis products (biochar and its carbon content, biogas and bio-oil) at different pyrolysis temperatures with 1 Mg feedstock straw biomass²²⁻²⁵. The bar plot in the left (a) and right panel (b) represent the production of biochar and bio-gas, respectively; the lines represent biochar carbon content (a) and bio-oil production (b).

196

195

Majority of the straw energy was converted to biochar and bio-oil regardless of pyrolysis 202 203 temperature (Supplementary Figure 4) and part of the straw energy was used for heating to sustain the IPEG system running. Every 1MJ rice straw will produce the electricity amount of 0.014 (300°C), 0.048 204 (400°C), 0.056 (500°C) and 0.058 (600°C) kWh. For wheat straw, the produced amounts of electricity 205 are 0.014 (300°C), 0.046 (400°C), 0.053 (500°C) and 0.054 (600°C) kWh MJ⁻¹ straw. For corn straw, 206 the produced amounts of electricity are 0.024 (300°C), 0.046 (400°C), 0.054 (500°C) and 0.054 (600°C) 207 kWh MJ⁻¹ straw. Converting these values to per-weight basis (Supplementary Table 8), 1 kg rice straw 208 will produce electricity with the amount of 0.22 (300°C), 0.73 (400°C), 0.85 (500°C) and 0.88 (600°C) 209 kWh; 1 kg wheat straw will produce 0.23 (300°C), 0.78 (400°C), 0.89 (500°C) and 0.90 (600°C) kWh; 210 and 1 kg corn straw will produce 0.40 (300°C), 0.76 (400°C), 0.89 (500°C) and 0.90 (600°C) kWh. 211 212 Taking into consideration the amounts of biochar and electricity, a pyrolysis temperature of 500°C will 213 produce the largest GHG mitigation potentials. Therefore, we operate the IPEG system under 500°C to 214 evaluate its GHG mitigation potentials in the IPEG-CH₄-N. On average, 1 Mg staple crop straw biomass will produce 879 kWh of electricity (Supplementary Tables 9 and 10), and will lead to a fossil fuel offset 215 (energy substitution effects) of 0.84 Mg CO₂-eq Mg⁻¹ straw, which is consistent with the result (0.88 216 Mg CO₂-eq Mg⁻¹ straw) of a recent study based on an Aspen Plus stimulation¹⁴. In this study, we have 217 taken into account the bio-oil upgrading from a biomass pyrolytic polygeneration system. In this system, 218 the condensed bio-oil was cooled and captured by a sprayed coolant containing sufficient water. The 219 220 bio-oil was then upgraded by removing the water via gravity separation before being used. The energy (electricity) consumption for the bio-oil upgrading process was considered into the analysis 221 222 (Supplementary Table 12). The electricity generation efficiencies of bio-gas and bio-oil listed in

Supplementary Table 10 are based on simple instead of complex upgrading process. Electricity 223 generation in power plants normally does not require bio-oil and bio-gas to go through a complex 224 upgrading process before combustion. Yang et al.³⁹ have suggested that the addition of bio-energy has 225 no significant impact on the electricity generation efficiency of the power plants when the share of 226 227 bioenergy is moderate (<15%). In our study, because there is not a huge amount of bio-oil and bio-gas 228 produced from biomass, they will not, and were also implicitly assumed not to, exceed 15% of the fuels in power plants. Overall, our calculation of electricity production is based on the energy balance, and 229 230 the electricity generation efficiencies are taken from related references that are based on the similar 231 upgrading process as in this study. 232

- 233
- 234

Supplementary Figure 4. Energy balance and electricity production of the IPEG system at different
 pyrolysis temperatures with 1 MJ staple crop straw biomass. The dots indicate the electricity generation
 with 1 MJ staple crop straw.

	straw ^a		
Type of Biomass	Wheat straw	Corn Straw	Rice straw
HHV (MJ kg ⁻¹ , dry basis)	16.8	16.6	15.12
Ultimate analysis			
Carbon (C)	43.0	43.3	40.1
Hydrogen (H)	5.64	5.92	5.47
Oxygen (O)	40.5	39.3	40.2
Nitrogen (N)	0.76	1.96	0.69
Sulphur (S)	0.78	0.66	0.48
Proximate analysis			
Fixed carbon (FC)	9.93	21.6	10.1
Volatile matter (VM)	80.7	82.2	76.9
Ash	9.37	8.86	13.1

242 Supplementary Table 8 Ultimate and proximate analyses % by weight (dry basis) of staple crop

^a References: He et al.²³ and Ansari et al.²⁵. HHV, higher heating value.

Supplementary Table 9 The bio-gas, bio-oil and electricity production of the IPEG system under

pyrolysis temperature of 500°C with 1 Mg feedstock straw biomass

	Bio-gas production	HHV (MJ Nm ⁻³)	Bio-gas generation (Nm ³ Mg ⁻¹ biomass)	Energy generation (HHV, MJ Mg ⁻¹ biomas	Electricity g s) (kWh Mg ⁻¹	generation ^a ¹ biomass)
	Rice	9.5	124	1,182	11	8
	Wheat	11	124	1,366	13	7
	Corn	9.5	125	1,185	11	9
	Bio-oil production	HHV (MJ kg ⁻¹)	Bio-oil generation (Mg Mg ⁻¹ biomass)	Energy generation (HHV, MJ Mg ⁻¹ biomas	Electricity s) (kWh Mg ⁻¹	generation ¹ biomass)
	Rice	19.1	0.41	7,772	73	4
	Wheat	18.0	0.44	8,003	75	6
	Corn	19.6	0.42	8,185	77	3
	Sum	Electricity generation (kWh Mg ⁻¹ biomass)				
	Rice	852				
	Wheat	893				
	Corn	892				
248 249 250	^a The electricity the energy conv	generations from bio-gas rersion efficiency factors (2	and bio-oil were calcu 36%, biogas; 34%, bio-	lated by multiplying the "oil) as shown in Suppleme	Energy generation entary Table 10.	n" by
251						
252	Supplement	tary Table 10 Electricity	generation efficience	ties from typical power	plants with bio-	gas
253			and bio-oil			
-	Туре	Plar	nt description	Elect ef	ricity generation ficiency (%) ^a	References
	Bio-gas	Combined heat	W)	36.1	26	

	Combined heat and power plants (364 kW)	38	27
	Thermal power plant (>100 MW)	36.1	26
	Solid oxide fuel cell (SOFC) generator (50 kW)	38.6	28
	Pyrolysis gas combustion power system (250 kW)	32.5	14
	Average	36	
	Fossil fuels power plants (20 MW)	30.4	29
	Gas turbine combined cycle (GTCC) power plant (10 MW)	38.7	29
Bio oil	Diesel generator system (20 MW)	31.3	29
D10-011	Integrated gasification combined cycle (IGCC) Power plant (60 MW)	33.9	30
	Combined heat and power plants (675 MW)	35.7	31
	Average	34	

^aThe average electricity generation efficiencies of biogas (36%) and bio-oil (34%) in current typical power plants

255 were used for estimating electricity generation in the IPEG system. The electricity generation efficiencies were

256 calculated on the basis of HHV. The conversion ratio from LHV (lower heating value) to HHV was 0.9018 for

- bio-gas and 0.9213 for bio-oil.
- 258

259

Supplementary Figure 5. Net GHG emissions from staple crop production in Jiangsu province under
 different straw to biochar ratios.

Supplementary Table 11 The calculated straw-to-biochar ratios for achieving carbon neutrality for
 staple food production in different provinces in China

Province	Zero emissions _{straw-to-biochar-ratio} ^a	Zero $emissions_{straw-to-biochar-ratio-corrected}^{b}$	Livestock feed	Direct straw application ^c
	%	%	%	%
Beijing	56.3	59.3	18.2	22.5
Tianjin	63.1	66.1	18.1	15.8
Hebei	56.3	59.3	18.2	22.5
Shanxi	44.6	47.6	29.4	23.0

Inner Mongolia	33.9	36.9	29.4	33.7
Liaoning	55.8	58.8	17.8	23.4
Jilin	43.6	46.6	17.8	35.6
Heilongjiang	55.4	58.4	17.8	23.8
Shanghai	95.4	98.4	11.6	0.00
Jiangsu	68.6	71.6	18.2	10.1
Zhejiang	89.1	92.1	10.6	0.00
Anhui	67.1	70.1	18.1	11.8
Fujian	111.5	100	10.6	0.00
Jiangxi	109.0	100	10.6	0.00
Shandong	57.6	60.6	18.1	21.3
Henan	40.6	43.6	18.2	38.2
Hubei	70.5	73.5	10.6	15.9
Hunan	101.2	100	10.6	0.00
Guangdong	114.4	100	10.6	0.00
Guangxi	112.9	100	16.5	0.00
Hainan	117.7	100	10.6	0.00
Chongqing	81.7	84.7	16.5	0.00
Sichuan	67.8	70.8	16.5	12.7
Guizhou	83.1	86.1	16.5	0.00
Yunan	75.9	78.9	16.5	4.6
Tibet	36.8	39.8	16.5	43.8
Shaanxi	67.8	70.8	29.4	0.00
Gansu	84.4	87.4	29.4	0.00
Qinghai ^a	47.8	50.8	29.4	19.8
Ningxia	52.2	55.2	29.4	15.4
Xinjiang	52.8	55.8	29.4	14.8

^a The calculated theoretical straw to biochar ratios for achieving carbon neutrality for staple food production in
China. The ratios in Fujian (FJ), Jiangxi (JX), Hunan (HN), Guangdong (GD), Guangxi (GX), and Hainan (HAN)
Province are above 100%, which means that even if all of the provincial staple crop residues were used by the
IPEG system, these provinces cannot become carbon neutral.

^bTo offset the emissions from FJ, JX, HN, GD, GX and HAN Province, additional 3% of staple crop residues in
other provinces was assumed to be used in the IPEG system, and the proportion of straw in these six provinces
was set to 100%.

272

273 We used the method described in the Methods section to calculate the proportion of staple crop 274 residues required to support the IPEG system to achieve carbon-neutral staple food production in each province (see "Zero emissions_{straw-to-biochar-ratio}" in Supplementary Table 11). Taking Jiangsu Province as 275 an example, theoretically feeding the IPEG system with 68.6% of staple crop residue can achieve 276 277 carbon-neutral staple food production. We found that the theoretical proportion of staple crop residues was above 100% in 6 provinces (Hainan, Guangdong, Guangxi, Jiangxi, Fujian and Hunan). This 278 denotes that even if all of the staple crop residues in these provinces were used in the IPEG system, 279 280 these provinces could not become carbon neutral due to high CH₄ emissions from paddy fields

(Supplementary Table 3). Therefore, to offset the emissions from these provinces, additional 3% of 281 staple crop residues in other provinces was assumed to be used in the IPEG system, and the proportion 282 of straw in these six provinces was set to 100% (see "Zero emissions_{straw-to-biochar-ratio-corrected}" values in 283 Supplementary Table 11). On average, 72% of staple crop residues would be required to feed the IPEG 284 285 system to achieve carbon neutrality for staple food production in 2018 (Supplementary Table 11). Under this situation, cumulative GHG emissions from staple crop production could be reduced from the current 286 666 Tg CO₂-eq yr⁻¹ to a net GHG reduction of 37.9 Tg CO₂-eq yr⁻¹ (Figure 2b). We treat this result as 287 "carbon neutrality" in this study partly because the achievement of precise carbon neutrality (zero 288 emissions) is difficult in practice and partly to buffer the uncertainty around the estimate (± 14 Tg CO₂-289 290 eq yr^{-1}).

To estimate GHG mitigation potentials under IPEG-CH₄-N, based on the proportions of "zero 291 292 emissions_{straw-to-biochar-ratio-corrected}" and "direct straw application", we calculated the GHG emissions from 293 specific staple crop cultivation in each province through considering the effects of biochar field 294 application and energy substitution. For the majority of the provinces, part of the straw was used for 295 biochar and energy production while part was directly retained in the field. The effects of combined 296 application of biochar and straw on field GHG emissions and SOC sequestration were evaluated 297 separately based on their respective application amount, before the effects were summed up (Effect_{straw-} biochar = Effect_{straw} + Effect_{biochar}) using the methods under Straw-CH₄-N and Biochar-CH₄-N. As shown 298 in a recent meta-analysis by Shang et al.³⁴, the interactive effects between different agricultural 299 managements on SOC sequestration and GHG emissions are commonly additive, and the additive effects 300 were widely adopted in previous studies^{2,3,34}. Therefore, we assumed that the effects of straw and biochar 301 302 are additive in this study. Based on the capacity of the IPEG plant under pyrolysis temperature of 500 °C 303 $(31591 \text{ Mg biomass yr}^{-1})$ and available amounts of straw biomass (Supplementary Table 13), we have 304 calculated the numbers of potential IPEG plants needed to be constructed in each province to achieve 305 carbon neutrality for staple food production in China. The amounts of biochar and electricity produced 306 under IPEG-CH₄-N in different provinces in 2018 were shown in Supplementary Table 13. Additional 307 GHG emissions were produced under IPEG-CH4-N due to transportation of crop residues, and 308 production and application of biochar which were also included into the analysis (see Supplementary 309 Note 3). GHG emissions from operation of the IPEG plants were from electricity consumption 310 (Supplementary Table 12). However, these additional GHG emissions are negligible compared to the reductions induced by IPEG-CH₄-N (Figure 1). We did not consider GHG emissions from pyrolysis 311 plant construction and equipment because they are insignificant. As shown in a recent study by Yang et 312 al.³⁶, total GHG emissions from plant construction (582 t CO₂-eq) and equipment (270 t CO₂-eq) are 313 estimated to be 852 t CO₂-eq, which are 42.6 t CO₂-eq yr⁻¹ considering an operation duration of a 314 pyrolysis plant for 20 years. Total GHG emissions from pyrolysis plant construction and equipment in 315 IPEG-CH₄-N (0.5 Tg CO₂-eq yr⁻¹) only account for 0.15% of the fossils fuel offset (326 Tg CO₂-eq 316 yr⁻¹). Therefore, GHG emissions from pyrolysis plant construction and equipment in IPEG-CH₄-N were 317

Supplementary Table 12 The construction and maintenance cost for IPEG plant^a

	Pyrolysis	Pyrolysis	Pyrolysis	Pyrolysis
	300 °C	400 °C	500 °C	600 °C
Initial capital plant cost (×10 ⁴ US\$ plant ⁻¹)	836	1163	1,618	2,250
Feedstock for pyrolysis (Mg yr ⁻¹)	30,000	30,000	30,000	30,000
Feedstock for heating (Mg yr ⁻¹)	1,361	1,441	1,591	2,094
Price of feedstock (US\$ Mg ⁻¹)	51.1	51.1	51.1	51.1
Electricity consumption (×10 ⁴ kWh yr ⁻¹)	52.0	61.0	67.4	75.2
Operation emissions (kg CO ₂ -eq Mg straw ⁻¹)	16.5	19.3	21.3	23.8
Electricity price (US\$/kWh)	0.113	0.113	0.113	0.113
Water Consumption ($\times 10^4$ Mg)	3.6	3.6	3.6	3.6
Price of water (US\$ yr ⁻¹)	0.756	0.756	0.756	0.756
Salary (US\$ yr ⁻¹)	453,787	45,3787	45,3787	45,3787
Discount rate (%)	7	7	7	7
Operation year	20	20	20	20
Equipment depreciation (×10 ⁴ US\$ yr ⁻¹)	69.33	96.44	134.14	186.58
Price of gas (US\$ m ⁻³)	0.12	0.14	0.22	0.28
Price of oil (US\$ Mg ⁻¹)	106.56	157.84	166.38	158.81

320 ^aReferences: He et al.²³, Xia et al.³² and Liu et al.³³. GHG emissions from operation of the IPEG plants were from 321 electricity consumption. The start-up fuel is used to kick off the first pyrolysis unit and then the process heat 322 generated from it will be used to fuel the next unit, and so forth. When large amounts of biochar are produced by 323 continuously running pyrolysis units, the amount of start-up fuel is negligible and often omitted in techno-324 economic and LCA analyses^{37, 38.}

325

326 **Supplementary Table 13** The amounts of staple crop straw biomass used for biochar and electricity

327 production, and the corresponding IPEG plant numbers and amounts of electricity generation in China

328

Drovinco	Feedingstock biomass	IPEG plant number	Electricity generation (×10 ⁴ kWh)			
Flovince	(Gg province ⁻¹)	(province)	Rice	Wheat	Corn	
Beijing	205	8	39	2,885	17,828	
Tianjin	1,380	51	20,197	33,772	83,508	
Hebei	19,223	709	19,853	726,341	1,201,548	
Shanxi	5,927	218	184	96,154	502,646	
Inner Mongolia	12,800	468	27,675	66,472	1,189,266	
Liaoning	11,527	420	164,884	687	978,955	
Jilin	15,165	551	199,722	22	1,304,838	
Heilongjiang	39,087	1,401	1,028,816	17,041	2,755,223	
Shanghai	905	32	71,582	10,845	1,205	
Jiangsu	22,022	788	1,057,279	840,880	217,443	
Zhejiang	4,056	142	325,783	28,679	18,037	
Anhui	23,778	850	923,123	931,329	439,028	
Fujian	3,219	102	256,325	93	11,608	
Jiangxi	17,895	567	1,467,851	2,870	17,128	
Shandong	27,663	1,019	40,222	1,296,847	1,462,215	
Henan	24,309	890	138,265	1,293,433	1,008,689	
Hubei	17,894	633	1,121,365	298,222	267,860	
Hunan	24,008	811	1,918,438	8,253	210,215	
Guangdong	9,923	315	776,464	183	50,208	
		18				

in 2018

Guangxi	10,967	348	669,862	452	252,399
Hainan	1,134	36	94,196		
Chongqing	5,037	179	246,970	6,111	225,378
Sichuan	16,684	597	675,279	150,150	782,432
Guizhou	5,310	189	244,346	25,982	235,545
Yunan	11,699	421	318,092	52,542	770,244
Tibet	84	4	132	6,970	1,429
Shaanxi	7,504	275	38,465	246,321	469,001
Gansu	7,547	278	1,433	204,846	556,011
Qinghai	253	10		18,874	6,742
Ningxia	1,979	72	25,221	19,315	151,725
Xinjiang	205	303	25,910	290,177	514,696

329 The adding amount of bio-energy was assumed to be 10–15% of the total feeding fuels in power plants to avoid a

330 significant effect on the electricity generation efficiency of the power plants³⁹.

332 Supplementary Note 5: Cost-benefit analysis

The effects of mitigation scenarios on crop yields, Nr losses, air pollutants (SO₂, PM_{2.5}, NO_X and 333 black carbon (BC)) emissions, and net environmental and economic benefits (NEEB) were evaluated. 334 335 We established empirical models based on the response of crop yields under straw (biochar) application to straw N input rate (biochar input rate) to calculate staple crop yields under different scenarios 336 (Supplementary Table 14). For Nr losses under BAU, we used the following models for calculation⁵: 337 NH₃ emissions (y), $y = 2.97 + 0.16 \times N_{rate}$ (p<0.01, R²=0.46, rice), $y = -4.95 + 0.17 \times N_{rate}$ (p<0.01, 338 $R^2=0.71$, wheat), $y = 1.45 + 0.24 \times N_{rate}$ (p<0.01, $R^2=0.75$, corn), N_{rate} denotes total N application rate; N 339 leaching (y), $y = 6.03 \times e^{(0.0048 \times Nsurplus)}$ (p<0.01, R²=0.31, rice), $y = 13.59 \times e^{(0.009 \times Nsurplus)}$ (p<0.01, R²=0.38, 340 wheat), $y = 25.31 \times e^{(0.0065 \times Nsurplus)}$ (p<0.01, R²=0.55, corn), N_{surplus} denotes N surplus that is defined as 341 342 total N application rate minus the amount of N taken up by crop aboveground biomass; N runoff (y), y $= 8.69 \times e^{(0.0077 \times Nsurplus)}$ (p<0.01, R²=0.45, rice), y = 0.0336 \times N_{rate} + 9.3264 (p<0.01, R²=0.30, wheat and 343 corn): NO emissions (y), y = 0.0013×N_{rate} + 0.57 (p<0.05, R²=0.22, rice), y = 0.0066×N_{rate} + 0.57 344 (p<0.01, R²=0.36, wheat and corn). For Nr losses under straw application (Straw-CH₄-N), we used the 345 following models based on our meta-analysis results for estimations: NH₃ emissions (y), $y = e^{(0.0023x + 1)}$ 346 $^{0.0529)} \times \text{NH}_{3\text{without-straw}}$ (p<0.01, R²=0.06); N leaching (y), y = e^(0.0007x - 0.0784) × Nleaching_{without-straw} (p<0.05, 347 $R^2=0.16$) (x denotes straw N input rate, kg N ha⁻¹ yr⁻¹). For Nr losses under biochar application (Straw-348 CH₄-N), we used the models based on our meta-analysis results for estimations: NH₃ emissions (y), y = 349 $e^{(0.011x + 0.0915)} \times NH_{3without-biochar}$ (p<0.05, R²=0.21); N leaching (y), y = $e^{(-0.0149x - 0.1044)} \times Nleaching_{without-biochar}$ 350 $_{biochar}$ (p<0.01, R²=0.59); N runoff (y), y = $e^{(-0.0131x - 0.1142)} \times Nrunoff_{without-biochar}$ (p<0.01, R²=0.85) (x 351 denotes biochar application rate, Mg C $ha^{-1}yr^{-1}$). Staple crop production in majority of the provinces 352 under IPEG-CH₄-N receives both straw and biochar application. The effects of combined application of 353 biochar and straw on Nr losses were evaluated separately based on their respective application amount 354 355 (using the calculation method in Straw-CH₄-N and Biochar-CH₄-N), before the effects were summed up $(Effect_{straw-biochar} = Effect_{straw} + Effect_{biochar})$. See Supplementary Tables 15–18 for the estimated Nr losses 356 357 under different scenarios. Biomass burning induced air pollutants (SO₂, PM_{2.5}, NO_X and BC) emissions

³³¹

under BAU were estimated by multiplying the burning amounts by the emission factors (SupplementaryTables 5 and 6).

For cost-benefit analysis, we calculated net environmental and economic benefits (NEEB) under 360 different scenarios using the equation: NEEB = NYB + NPB - GHG cost - Nr cost. Here, NYB 361 represents net yield benefits from staple grain production², and NPB denotes net pyrolysis benefits 362 which were calculated by subtracting the construction and maintenance cost for IPEG plant 363 (Supplementary Table 12) from the gross economic incomes of selling biochar and energy 364 (Supplementary Figure 6). GHG and Nr cost represents damage costs of GHG emissions and Nr losses 365 to the environment and human health. NYB was calculated by subtracting agricultural input costs 366 (agricultural inputs and labors) from the gross economic incomes of selling staple grains (Supplementary 367 368 Table 18). Information concerning agricultural inputs and labor cost, and price of various food products can be find in the website of National Bureau of Statistic of the People's Republic of China 369 (http://www.stats.gov.cn/) and National Product Cost Survey (http://www.npcs.gov.cn/). NPB was 370 371 calculated by subtracting the maintaining costs (e.g., initial capital plant cost, water and electricity 372 consumption costs and staff salary) from the obtained economic benefits of selling biochar production and energy source (Supplementary Table 12). The substantial increase in NEEB for corn under IPEG-373 374 CH₄-N (Figure 6) was due to the large pyrolysis benefits and reductions in GHG and Nr cost attributed 375 to much higher amount of corn straw for pyrolysis and energy/biochar production compared to rice and 376 wheat (Supplementary Tables 5, 7 and 12).

377 Damage costs of GHG and Nr refer to the damage to ecosystem and human health and the stimulation 378 effect on climate warming. Damage costs to ecosystem denote soil acidification and water 379 eutrophication caused by NH₃ and NO_X emissions, and water eutrophication caused by N leaching and runoff, which were derived from Xia and Yan⁴⁰. Human health costs incurred by NH₃, and NO_X and N₂O 380 emissions were derived from Gu et al.⁴¹. Since no studies have evaluated the health costs caused by N 381 leaching and runoff in China, we assumed the costs were only sixth of that in European N assessment 382 (about 1.41 \$ kg⁻¹ N) after considering the difference of people's willingness to pay in China and 383 Europe²⁷. Damage costs of climate warming incurred by GHG emissions were extracted from van 384 Grinsven et al.⁴². Overall, damage costs of GHG emissions and Nr losses are as follows²: CO₂ emissions, 385 26.6 US\$ Mg⁻¹ CO₂-eq; NH₃ emissions, 5.72 US\$ kg⁻¹ N; NOx emissions, 4.53 US\$ kg⁻¹ N; N leaching 386 and runoff, 1.41 US kg⁻¹ N. 387

Our results show that the current high price of biochar (270 US\$ t^{-1}) exceeds its economic benefits associated with crop yield enhancement, leading to a reduction in crop yield revenue by 15.7 billion US\$ yr⁻¹. If considering the total amount of biochar under IPEG-CH₄-N, we can backward calculate that only when the price of biochar drops below 156 \$ t^{-1} will its application produce positive economic returns for farmers. Therefore, national subsidy programs should be considered to provide an incentive for farmers to apply biochar and promote the deployment of the IPEG technology at large scales.

395

Supplementary Table 14 Staple crop straw yields (Mg ha⁻¹) under different scenarios in each province in China (Straw-CH₄-N (S1), Biochar-CH₄-N (S2) and IPEG-CH₄-N (S3))

pro	province in China (Straw-CH ₄ -N (S1), Biochar-CH ₄ -N (S2) and IPEG-CH ₄ -N (S3))											
Drovince	Rice				Wheat			Corn				
Flovince	BAU	S 1	S2	S3 ^a	BAU	S 1	S 2	S 3	BAU	S 1	S 2	S 3
Beijing	5.00	5.01	5.32	5.16	5.41	5.42	5.55	5.49	6.76	6.79	7.80	7.80
Tianjin	9.37	9.40	9.89	9.64	5.15	5.16	5.29	5.23	5.92	5.95	6.85	6.85
Hebei	6.70	6.71	7.11	6.91	6.15	6.17	6.32	6.24	5.65	5.67	6.56	6.56
Shanxi	7.50	7.51	7.97	7.74	4.08	4.09	4.20	4.14	5.62	5.64	6.55	6.55
Inner Mongolia	8.11	8.12	8.61	8.36	3.39	3.39	3.49	3.44	7.22	7.26	8.33	8.33
Liaoning	8.56	8.59	9.08	8.83	5.83	5.86	6.00	5.93	6.13	6.17	7.13	7.13
Jilin	7.70	7.72	8.17	7.95	0.33	0.33	0.34	0.33	6.62	6.67	7.69	7.69
Heilongjiang	7.10	7.12	7.54	7.33	3.31	3.32	3.41	3.36	6.30	6.36	7.30	7.30
Shanghai	8.49	8.52	8.97	8.74	6.10	6.12	6.26	6.19	7.22	7.26	8.34	8.34
Jiangsu	8.84	8.86	9.35	9.10	5.36	5.37	5.50	5.44	5.82	5.84	6.76	6.76
Zhejiang	7.33	7.35	7.76	7.56	4.19	4.20	4.31	4.26	4.18	4.19	4.89	4.89
Anhui	6.61	6.62	7.00	6.81	5.59	5.60	5.74	5.67	5.23	5.25	6.08	6.08
Fujian	6.43	6.44	6.83	6.63	5.00	5.01	5.13	5.07	4.38	4.39	5.11	5.11
Jiangxi	6.09	6.10	6.46	6.28	2.19	2.19	2.26	2.23	4.49	4.50	5.22	5.22
Shandong	8.66	8.68	9.17	8.93	6.09	6.10	6.25	6.18	6.63	6.65	7.69	7.69
Henan	8.08	8.10	8.57	8.33	6.28	6.29	6.44	6.37	5.00	5.02	5.81	5.81
Hubei	8.22	8.24	8.69	8.47	3.71	3.72	3.82	3.77	4.14	4.16	4.83	4.83
Hunan	6.67	6.68	7.07	6.88	3.42	3.43	3.52	3.47	5.65	5.67	6.55	6.55
Guangdong	5.77	5.78	6.13	5.96	5.00	5.01	5.13	5.07	4.54	4.55	5.30	5.30
Guangxi	5.80	5.81	6.17	5.99	1.67	1.67	1.72	1.69	4.68	4.70	5.48	5.48
Hainan	5.31	5.32	5.64	5.48								
Chongqing	7.42	7.44	7.88	7.66	3.31	3.31	3.41	3.36	5.68	5.72	6.61	6.61
Sichuan	7.89	7.91	8.37	8.14	3.89	3.90	4.01	3.96	5.75	5.78	6.68	6.68
Guizhou	6.26	6.28	6.66	6.47	2.34	2.35	2.42	2.38	4.30	4.32	5.03	5.03
Yunan	6.21	6.23	6.60	6.41	2.19	2.19	2.26	2.23	5.19	5.22	6.04	6.04
Tibet	5.56	5.57	5.91	5.74	6.15	6.18	6.32	6.25	6.54	6.58	7.58	7.58
Shaanxi	7.66	7.67	8.13	7.90	4.15	4.16	4.27	4.21	4.95	4.97	5.78	5.78
Gansu	6.58	6.59	7.00	6.79	3.62	3.62	3.72	3.67	5.83	5.85	6.78	6.78
Qinghai					3.82	3.82	3.93	3.88	6.22	6.24	7.22	7.22
Ningxia	8.54	8.56	9.06	8.81	3.23	3.24	3.33	3.29	7.55	7.59	8.71	8.71
Xinjiang	9.27	9.29	9.84	9.56	5.54	5.56	5.70	5.63	8.01	8.06	9.24	9.24

^a Staple crop production in majority of the provinces under IPEG-CH₄-N receives both straw and biochar application. Here, the effects of combined application of biochar and straw on crop yields were evaluated separately based on their respective application amount (using the calculation method under Straw-CH₄-N and

400 Biochar-CH₄-N) before the effects were summed up (Effect_{straw-biochar} = Effect_{straw} + Effect_{biochar}).

401 402

403 Supplementary Table 15 Total N losses from staple crop production (Gg N province⁻¹) under BAU in
 404 each province in China

Province	NH ₃ emissions	N ₂ O emissions	NOx emissions	N leaching	N runoff
Beijing	4.3	0.2	0.6	2.5	1.4
Tianjin	24.2	0.9	4.0	13.3	7.8
Hebei	378.8	14.2	67.0	241.9	123.9
Shanxi	131.9	5.0	23.1	90.0	41.7
Inner Mongolia	323.5	11.9	52.1	183.5	99.2
Liaoning	193.4	7.4	40.0	86.7	56.3
Jilin	266.5	9.2	59.6	120.8	78.2
Heilongjiang	505.2	17.1	119.7	236.9	142.2
Shanghai	9.8	0.4	1.7	2.0	3.8
Jiangsu	318.8	9.7	54.8	138.6	103.1
Zhejiang	41.4	1.2	7.5	12.0	12.5
Anhui	343.4	11.1	60.2	139.1	119.0
Fujian	34.0	0.8	5.6	9.0	9.4
Jiangxi	182.1	5.1	29.6	33.9	55.9
Shandong	575.9	22.6	98.6	293.5	189.4
Henan	485.8	17.5	93.0	310.8	180.4
Hubei	185.0	5.5	39.0	81.8	57.5
Hunan	193.6	4.9	37.7	43.7	56.2
Guangdong	112.8	3.6	17.2	29.8	35.6
Guangxi	149.0	5.1	23.0	61.5	42.4
Hainan	12.5	0.4	2.0	2.4	4.1
Chongqing	68.5	2.2	12.0	27.8	18.9
Sichuan	232.6	7.4	44.9	98.0	66.3
Guizhou	83.7	3.1	13.6	52.6	23.4
Yunan	226.0	10.1	34.8	225.4	58.3
Tibet	1.9	0.1	0.4	0.9	0.7
Shaanxi	140.6	6.0	23.6	155.9	41.5
Gansu	151.8	7.2	22.4	178.8	40.5
Qinghai ^a	5.1	0.2	1.0	3.0	2.1
Ningxia	39.4	1.4	6.1	24.9	11.8
Xiniiang	163.0	5.6	27.7	107.1	48.6

Supplementary Table 16 Total N losses from staple crop production (kg N province⁻¹) under Straw-

CH₄-N in each province in China

Province	NH ₃ emissions	N ₂ O emissions	NOx emissions	N leaching	N runoff
Beijing	4.5	0.2	0.4	2.5	1.7
Tianjin	25.0	0.9	3.0	13.4	9.6
Hebei	388.6	12.5	50.4	243.8	147.3
Shanxi	135.3	4.4	16.4	90.7	50.2
Inner Mongolia	337.5	10.8	33.1	185.4	131.4
Liaoning	203.5	7.2	21.7	88.2	82.1
Jilin	280.0	8.6	29.2	122.8	116.7
Heilongjiang	532.1	16.6	60.0	241.3	217.1
Shanghai	10.3	0.4	1.2	2.1	5.1
Jiangsu	327.2	8.9	41.5	139.5	122.5

Zhejiang	42.6	1.2	5.2	12.2	15.4
Anhui	350.5	10.5	45.2	140.0	138.2
Fujian	34.7	0.9	4.2	9.1	11.1
Jiangxi	186.5	5.5	21.5	34.3	67.1
Shandong	591.8	20.4	75.6	295.9	225.5
Henan	496.4	15.3	65.8	313.3	212.3
Hubei	189.8	5.3	26.0	82.6	70.6
Hunan	198.2	5.3	25.8	44.1	69.0
Guangdong	115.8	3.8	12.6	30.1	42.8
Guangxi	153.8	5.2	16.1	62.2	52.8
Hainan	12.8	0.4	1.5	2.4	4.9
Chongqing	71.2	2.1	7.6	28.2	24.9
Sichuan	241.8	7.3	27.1	99.4	88.2
Guizhou	86.5	3.0	9.1	53.2	29.4
Yunan	236.2	9.3	23.0	228.3	76.8
Tibet	2.0	0.1	0.3	0.9	0.9
Shaanxi	144.1	5.0	18.1	157.1	48.6
Gansu	156.4	6.0	17.8	180.3	48.1
Qinghai ^a	5.2	0.2	0.7	3.0	2.4
Ningxia	41.0	1.3	4.2	25.1	15.2
Xinjiang	169.4	4.9	20.0	108.0	61.6

Supplementary Table 17 Total N losses from staple crop production (Gg N province⁻¹) under Biochar-CH₄-N in each province in China

Province	NH ₃ emissions	N ₂ O emissions	NOx emissions	N leaching	N runoff
Beijing	4.0	0.1	0.4	1.9	1.0
Tianjin	22.0	0.7	2.6	10.3	5.8
Hebei	349.2	9.9	44.2	185.1	97.8
Shanxi	126.0	3.7	14.3	70.1	35.7
Inner Mongolia	306.9	7.9	28.4	139.2	74.9
Liaoning	186.4	5.6	18.9	70.7	49.2
Jilin	256.3	6.6	25.5	94.5	68.2
Heilongjiang	477.0	13.7	54.0	186.9	120.1
Shanghai	8.2	0.2	1.1	1.5	2.1
Jiangsu	272.1	7.3	37.3	100.2	73.2
Zhejiang	35.5	1.1	5.1	9.6	8.5
Anhui	297.8	8.8	40.3	107.0	90.7
Fujian	29.5	0.9	4.0	7.5	6.8
Jiangxi	155.5	4.7	20.1	28.0	38.9
Shandong	526.9	16.3	65.8	228.9	148.4
Henan	438.5	11.5	57.3	204.5	144.6
Hubei	161.5	5.5	24.4	66.9	43.7
Hunan	167.1	5.5	25.2	36.0	39.5
Guangdong	97.6	2.9	12.0	24.5	24.8
Guangxi	135.5	4.2	14.9	50.5	34.1
Hainan	10.8	0.3	1.5	2.0	3.0
Chongqing	62.7	1.8	6.9	22.2	14.9
Sichuan	214.4	6.6	24.6	79.5	55.5

Guizhou	78.4	2.7	8.2	43.6	20.1
Yunan	217.4	8.0	20.1	180.2	50.1
Tibet	1.7	0.0	0.2	0.6	0.6
Shaanxi	132.4	4.5	15.9	121.1	36.0
Gansu	143.9	5.4	15.4	137.1	35.0
Qinghai ^a	4.4	0.2	0.6	2.4	1.9
Ningxia	36.5	0.9	3.7	18.2	8.9
Xinjiang	149.1	3.7	17.3	75.7	38.0

412 \$

Supplementary Table 18 Total N losses from staple crop production (Gg N province⁻¹) under IPEG-

CH₄-N in each province in China

Province	NH ₃ emissions	N ₂ O emissions	NOx emissions	N leaching	N runoff
Beijing	3.8	0.1	0.3	1.5	0.8
Tianjin	21.3	0.5	1.9	8.4	4.7
Hebei	336.6	8.1	33.7	149.6	82.8
Shanxi	118.6	3.0	11.1	57.2	30.3
Inner Mongolia	293.1	7.1	21.7	111.1	76.2
Liaoning	175.6	4.5	12.6	59.1	42.7
Jilin	244.5	5.6	17.3	79.3	67.0
Heilongjiang	457.3	9.9	32.4	153.4	109.0
Shanghai	8.5	0.2	0.6	1.4	1.6
Jiangsu	281.0	5.4	25.5	87.7	59.9
Zhejiang	36.6	0.7	2.9	8.3	6.7
Anhui	304.3	6.8	27.6	94.4	73.7
Fujian	29.1	0.5	2.5	6.8	6.9
Jiangxi	155.5	3.3	11.3	28.2	39.6
Shandong	510.8	13.3	50.9	189.2	124.5
Henan	435.0	10.9	44.5	197.3	136.3
Hubei	163.9	3.2	14.8	56.4	36.9
Hunan	171.8	3.0	12.7	32.4	31.0
Guangdong	96.2	2.3	7.2	22.7	25.1
Guangxi	128.8	3.3	9.6	44.0	33.6
Hainan	10.8	0.3	0.9	2.0	3.0
Chongqing	61.2	1.2	4.2	18.0	11.2
Sichuan	208.7	4.4	15.6	66.5	44.9
Guizhou	75.2	1.9	5.3	33.9	14.9
Yunan	202.2	5.4	13.8	126.4	37.1
Tibet	1.8	0.0	0.2	0.6	0.6
Shaanxi	124.2	3.1	11.7	88.1	26.1
Gansu	134.5	3.6	11.3	95.8	24.9
Qinghai ^a	4.5	0.1	0.5	2.2	1.6
Ningxia	34.9	0.8	2.6	14.5	7.4
Xinjiang	144.2	2.9	12.8	59.6	31.4

Supplementary Table 19 Price of food products and various agricultural economic inputs

Category	Cost or price
N fertilizer	$0.55 \text{ US}\$ \text{ kg}^{-1} \text{ N}$
P fertilizer	$0.44 \text{ US} \text{ kg}^{-1} \text{ P}_2 \text{O}_5$
K fertilizer	$0.58 \text{ US} \text{ kg}^{-1} \text{ K}_2\text{O}$
Organic fertilizer	$0.29 \text{ US} \text{ kg}^{-1} \text{ N}$
Diesel oil	0.91 US\$ kg ⁻¹
Pesticides	$3.81 \text{ US} \text{ kg}^{-1}$
Plastic film	$1.48 \text{ US}\$ \text{ kg}^{-1}$
Electricity	$0.08 \text{ US} \text{ kWh}^{-1}$
Biochar	270 US t ⁻¹
Rice labor	$0.09 \text{ US} \text{ kg}^{-1} \text{ rice}$
Flour labor	0.08 US kg ⁻¹ wheat
Fodder labor	$0.07 \text{ US} \text{ kg}^{-1} \text{ corm}$
Labor costs for biochar application	15.2 US\$ t^{-1} ha ⁻¹
Rice price	$0.53 \text{ US} \text{ kg}^{-1}$
Wheat price	$0.47 \text{ US} \text{ kg}^{-1}$
Corn price	$0.32 \text{ US} \text{ kg}^{-1}$

417 The data regarding agricultural inputs and labor cost and price of various food products was obtained from the

418 website of National Bureau of Statistic of the People's Republic of China (http://www.stats.gov.cn/) and National

419 Product Cost Survey (http://www.npcs.gov.cn/).

420

423 Supplementary Figure 6. Total GHG emissions, Nr losses, crop yield and net environmental and
424 economic benefits (NEEB) from staple crop production under different scenarios in China. Straw-CH₄425 N (S1), Biochar-CH₄-N (S2) and IPEG-CH₄-N (S3).

429 Supplementary Figure 7. The reductions in air pollutants (SO₂, PM_{2.5}, NO_X and BC) emissions induced
430 by IPEG-CH₄-N.

431

432 Supplementary Note 6: Maximum GHG mitigation potential under IPEG-CH₄-N

On average, 72% of provincial staple crop straw was required to feed the IPEG system to achieve 433 434 carbon neutrality for staple food production in 2018 under IPEG-CH₄-N (Supplementary Table 11). Here, 435 we further calculated the maximum GHG mitigation potentials by assuming that all the staple crop 436 residues (except for those used for livestock feed) (82%) were used in accordance with the IPEG-CH₄-437 N. We found that total GHG emissions would be reduced from current 666 to a net GHG reduction of 236 Tg CO₂-eq yr⁻¹ and the total reductions (902 Tg CO₂-eq yr⁻¹) can offset 8.5% of the total national 438 emissions (Supplementary Table 20 and Supplementary Figure 8), together with higher crop yields and 439 environmental benefits. Therefore, as the bioenergy with carbon capture and storage (BECCS) systems 440 441 continue to develop, the implementation of IPEG-CH₄-N at large scales could result in a more prompt 442 reduction in GHG emissions from agricultural production in China with better environmental and 443 economic benefits.

- 444
- 445
- 446
- 447

Supplementary Table 20 The maximum mitigation potentials of IPEG-CH₄-N on staple crop .

449	production in China					
	Scenarios	GHG emissions $(Tg CO_2 yr^{-1})$	Nr losses (Tg N yr ⁻¹)	Crop yield (Tg yr ⁻¹)	NEEB (billion US\$ yr ⁻¹)	
	BAU	666.5	11.5	596.8	121.3	
	Straw-CH ₄ -N	560.9	10.0	599.0	127.6	
	Biochar-CH ₄ -N	232.7	9.6	653.9	125.9	
	IPEG-CH4-N IPEG-CH4-N	-38.0ª	8.6	646.1	165.1	
	(Maximum potential)	-236.1ª	8.3	652.5	188.1	

^aNegative values denote the net GHG reduction effect attributed to the IPEG-CH₄-N.

454

Supplementary Figure 8. Maximum mitigation potential of IPEG-CH₄-N on net GHG emissions from staple food production in China.

Supplementary Figure 9. Sensitivity analysis of carbon footprint (CF) of staple food production in 471 China under the scenario of IPEG-CH₄-N. Error bars indicate 95% confidence interval (CI) generated 472 through Monte Carlo simulations, and data are presented as mean values +/- 95% CI. For sensitivity 473 analysis, we assumed a CV of 30% for the 7 key components to individually evaluate how CF of staple 474 475 food production in China responses to the changes in the single key component based on a Monte Carlo 476 simulation. We found that CH₄ emissions from paddy fields and energy production from IPEG system 477 are the two most sensitive factors determining rice CF. In contrast, energy production from IPEG system 478 and SOC sequestration associated with biochar application are the two most sensitive factors 479 determining wheat and corn CF.

480 481

483

482 Supplementary References

- 484 1. Huang Y, Tang Y. An estimate of greenhouse gas (N₂O and CO₂) mitigation potential under various
 485 scenarios of nitrogen use efficiency in Chinese croplands. *Global Change Biol.* 16, 2958–2970
 486 (2010).
- 2. Xia L, Ti C, Li B, Xia Y, Yan X. Greenhouse gas emissions and reactive nitrogen releases during the
 life-cycles of staple food production in China and their mitigation potential. *Sci. Total Environ.*556,116–125 (2016).
- 490 3. Yan XY, Akiyama H, Yagi K, *et al.* Global estimations of the inventory and mitigation potential of
 491 methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on
 492 Climate Change Guidelines. *Global Biogeochem. Cy.* 23 (2009).
- 493 4. Zhao Y, Wang M, Hu S, et al. Economics- and policy-driven organic carbon input enhancement

- 494 dominates soil organic carbon accumulation in Chinese croplands. *P. Natl. Acad. Sci. USA* **115**,
- 495 4045–4050 (2018).
- 496 5. Chen X, Cui Z, Fan M, *et al.* Producing more grain with lower environmental costs. *Nature* 514,
 497 486–489 (2014).
- 498 6. Yan XY, Xia LL, Ti CP. Temporal and spatial variations in nitrogen use efficiency of crop production
 499 in China. *Environ. Pollut.* 293, 118496 (2022).
- 7. Liu Y, Zhang J, Zhuang M. Bottom-up re-estimations of greenhouse gas and atmospheric pollutants
 derived from straw burning of three cereal crops production in China based on a national
 questionnaire. *Environ. Sci. Pollut. Res.* 28, 65410–65415 (2021).
- 8. Zhuang M, Liu Y, Yang Y, Zhang Q, Hao Y, Yin Y, Cui Z. The sustainability of staple crops in China
 can be substantially improved through localized strategies. *Renew. Sust. Energ. Rev.* 154, 111893
 (2022).
- 506 9. Liang L. Environmental impact assessment of circular agriculture based on life cycle assessment:
 507 Methods and case studies. *Doctoral Dissertation* 2009, China Agricultural University (in Chinese
 508 with English abstract).
- 509 10. Zhang W, Dou Z, He P, *et al.* New technologies reduce greenhouse gas emissions from nitrogenous
 510 fertilizer in China. *P. Natl. Acad. Sci. USA* 110, 8375–8380 (2013).
- 511 11. Li F. Greenhouse gas emissions from major energy consumption in wheat production in China.
- 512 J. Agro-Environ. Sci. 33, 1041–1049 (2014) (in Chinese with English abstract).
- 513 12. Cheng K, Pan G, Smith P, *et al.* Carbon footprint of China's crop production-An estimation using
 514 agro-statistics data over 1993–2007. *Agr. Ecosyst. Environ.* 142, 231–237 (2011).
- 515 13. Zhao X, Pu C, Ma S, Liu S, Xue J, Wang X, Wang Y, Li S, Lal R, Chen F, Zhang. Management516 induced greenhouse gases emission mitigation in global rice production. *Sci. Total Environ.* 649,
 517 1299–1306 (2019).
- 518 14. Yang Q, Zhou H, Bartocci P, Fantozzi F, Mašek O, Agblevor FA, *et al.* Prospective contributions of
 519 biomass pyrolysis to China's 2050 carbon reduction and renewable energy goals. *Nat. Commun.*520 12, 1698 (2021).
- 15. Xia L, Lam SK, Chen D, Wang J, Tang Q, Yan X. Can knowledge-based N management produce
 more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta analysis. *Global Change Biol.* 23, 1917–1925 (2017).
- 16. Liu C, Lu M, Cui J, Li B, Fang C. Effects of straw carbon input on carbon dynamics in agricultural
 soils: a meta-analysis. *Global Change Biol.* 20, 1366–1381 (2014).
- Ye L, Camps-Arbestain M, Shen Q, Lehmann J, Singh B, Sabir, M. Biochar effects on crop yields
 with and without fertilizer: A meta-analysis of field studies using separate controls. *Soil Use and Manage.* 36, 2–18 (2020).
- 18. Bai X, Huang Y, Ren W, Coyne M, *et al.* Responses of soil carbon sequestration to climate-smart
 agriculture practices: A meta-analysis. *Global Change Biol.* 25, 2591–2606 (2019).

- 19. He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, et al. Effects of biochar application on soil greenhouse
 gas fluxes: a meta-analysis. *GCB Bioenergy* 9, 743–755 (2017).
- 20. Yuan B, Nie Z, Di X, *et al.* Life cycle inventories of fossil fuels in China (I): Energy sources
 consumption and direct pollutant emissions. *Modern Chemical Industry* 26, 59–64 (2006) (in
 Chinese with English abstract).
- 21. Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, *et al.* Technologies and perspectives for
 achieving carbon neutrality. *The Innovation* 2, 100180 (2021).
- 538 22. Gao J, Zhang A, Lam S, *et al.* An integrated assessment of the potential of agricultural and forestry
 539 residues for energy production in China. *GCB Bioenergy* 8, 880–89 (2016).
- 540 23. He X, Liu Z, Niu W, Yang L, Zhou T, Qin D *et al.* Effects of pyrolysis temperature on the
 541 physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. *Energy*542 143, 746–56 (2018).
- 543 24. Liao C, Wu C, Yan Y, *et al.* Chemical elemental characteristics of biomass fuels in China. *Energy*544 27, 119–130 (2004).
- 545 25. Ansari SH, Ahmed A, Razzaq A, Hildebrandt D, Liu X, Park YK. Incorporation of solar-thermal
 546 energy into a gasification process to co-produce bio-fertilizer and power. *Environ. Pollut.* 266,
 547 115103 (2020).
- 548 26. Hakawati R, *et al.* What is the most energy efficient route for biogas utilization: Heat, electricity or
 549 transport? *Appl. Energ.* 206, 1076–1087 (2017).
- 550 27. Budzianowski WM, Budzianowska DA. Economic analysis of biomethane and bioelectricity
 551 generation from biogas using different support schemes and plant configurations. *Energy* 88,
 552 658–666 (2015).
- 28. Van herle, Membrez JY, Bucheli O. Biogas as a fuel source for SOFC co-generators. J. Power
 Sources 127, 300–312 (2004).
- 555 29. Fan, J. *et al.* Life cycle assessment of electricity generation using fast pyrolysis bio-oil. *Renew. Energ.*556 36, 632–641 (2011).
- 30. Braimakis K. *et al.* Economic evaluation of decentralized pyrolysis for the production of bio-oil as
 an energy carrier for improved logistics towards a large centralized gasification plant. *Renew. Sust. Energ. Rev.* 35, 57–72 (2014).
- 31. Ng KS, Sadhukhan J. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and
 CHP synthesis platform. *Biomass Bioenerg.* 35, 3218–3234 (2011).
- 32. Xia S, Xiao H, Liu M, Chen Y, Yang H, Chen H. Pyrolysis behavior and economics analysis of the
 biomass pyrolytic polygeneration of forest farming waste. *Bioresour. Technol.* 270, 189–97
 (2018).
- 33. Liu Z, Niu W, Chu H, Zhou T, Niu Z. Effect of the carbonization temperature on the properties of
 biochar produced from the pyrolysis of crop residues. *BioResources* 13, 3429–3446 (2018).
- 567 34. Shang Z, Abdalla M, Xia L, Zhou F, Sun W, Smith P. Can cropland management practices lower net

- 568 greenhouse emissions without compromising yield? *Global Change Biol.* **27**, 4657–4670 (2021).
- 35. Wang B, Cai A, Li Y, *et al.* Four pathways towards carbon neutrality by controlling net greenhouse
 gas emissions in Chinese cropland. *Resour. Conserv. Recyc.* 186, 106576 (2022).
- 36. Yang Q, Han F, Chen Y, Yang H, Chen H. Greenhouse gas emissions of a biomass-based pyrolysis
 plant in China. *Renew. Sust. Energ. Rev.* 53, 1580–1590 (2016).
- 37. Jaroenkhasemmeesuk C, Tippayawong N. Technical and economic analysis of a biomass
 pyrolysis plant. *Energy Procedia* 79, 950–955 (2015).
- 575 38.Wright M, Daugaard D, Satrio J, *et al.* Techno-economic analysis of biomass fast pyrolysis to 576 transportation fuels. *Fuel* **89**, S2–S10 (2010).
- 39. Yang SI, Wu MS, Hsu TC. Spray combustion characteristics of kerosene/bio-oil part I: Experimental
 study. *Energy* 119, 26–36 (2017).
- 40. Xia Y, Yan X. Life-cycle evaluation of nitrogen-use in rice-farming systems: implications for
 economically-optimal nitrogen rates. *Biogeosciences* 8, 3159–3168 (2011).
- 41. Gu B, Ge Y, Ren Y, *et al.* Atmospheric reactive nitrogen in China: Sources, recent trends, and damage
 costs. *Environ.Sci. Technol.* 46, 9420–9427 (2012).
- 42. van Grinsven HJ, Holland M, Jacobsen BH, Klimont Z, Sutton MA, Jaap Willems W. Costs and
 benefits of nitrogen for Europe and implications for mitigation. *Environ. Sci. Technol.* 47, 3571–
 3579 (2013).
- 586
- 587