Microscale spatial distribution and soil organic matter persistence in top and subsoil

Thiago M. Inagaki * ^{a,d #}, Angela R. Possinger ^{b ##}, Steffen A. Schweizer ^a, Carsten W. Mueller ^e, Carmen Hoeschen ^a, Michael J. Zachman ^{c ###}, Lena F. Kourkoutis ^{c,f}, Ingrid Kögel-Knaber ^{a,d}, Johannes Lehmann ^{b,d}.

*corresponding author: thiago.inagaki@nibio.no

- a) Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, Freising, Germany. 85354
- b) Soil and Crop Sciences, Cornell University, 909 Bradfield Hall, Ithaca NY, USA 14853
- c) School of Applied and Engineering Physics, 271 Clark Hall, Cornell University, Ithaca NY, USA 14853
- d) Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a
 Garching, Germany, 85748
- e) Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K
- f) Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY, USA 14853

#Current address: Department of Biogeochemistry and Soil Quality, Norwegian Institute of Bioeconomy Research (NIBIO), Høgskoleveien 7, 1430 Ås, Norway. ##Current address: School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA ### Current address: Center for Nanophase Materials Sciences, Oak Ridge

National Laboratory, Oak Ridge, TN 37831, USA

Supplementary Figures

Supplementary Fig. 1: Soil organic carbon (SOC) amount in different fractions of the top and subsoil samples used in the experiment. Different composition emphasizes the presence of light fractions in the topsoil (fPOM = free particulate organic matter; oPOM = occluded particulate organic matter) and mineral heavy fractions in the subsoil (20-2 and < 2 μ m mineral fractions. Error bars indicate the standard error between three technical replicates. Further soil properties are listed in Table 1.

¹³C and ¹⁵N enriched amendments

Hot-spot OM	Distributed OM
(1 - 2 mm)	(< 0.7 μm)
¹³ C = 1.77 atom %	¹³ C = 1.77 atom %
¹⁵ N = 7.59 atom %	¹⁵ N = 7.62 atom %

C: 300 mg g⁻¹, N: 12 mg g⁻¹, C:N ratio: 25, pH (CaCl₂): 4.6

Supplementary Fig. 2: **Summary figure of the incubation experiment.** The two units represent the C inputs used in the incubation as follows: 1 – Hot-spot organic matter (OM); and 2 – Distributed OM. The OM was extracted from the willow leaves by shaking them in water for 72h at 32°C. After this period, the material was filtered with a 0.7 µm filter and freeze-dried. The point source OM treatment was pelleted in 1-2 mm size pellets and the distributed OM treatment was re-suspended in water.

Supplementary Fig. 3: ¹³C NMR spectra and integrals. Here we present the light and heavy fraction of control samples from the top (0 - 0.2 m) and subsoil (0.8 - 0.9 m) before the incubation experiment and the microbially derived organic matter (DOM) used in the experiment as amendments before the incubation.

(a) Scanning electron microscopy

(c) ¹⁵N enrichment (¹⁶O⁻)

(e) Pore distance

(b) OM-related NanoSIMS measurement

(d) OM-related image segmentation


```
(f) Local pore thickness
```


Supplementary Fig. 4: **Workflow of the NanoSIMS image analysis.** After (a) preliminary scanning electron microscopy analyses, measurements of ion distributions were conducted using nanoscale secondary ion mass spectrometry (NanoSIMS) to reveal (b) the distribution of ¹⁶O⁻ (red), ¹²C⁻+¹³C⁻ (green), ¹²C¹⁴N⁻+¹²C¹⁵N⁻ (blue)and (c) overlay of the ¹⁵N enrichment on the ¹⁶O⁻ distribution (grey). (d) The ion distributions were used to compute the image segments of mineral surfaces, OM, and resin based on a machine-learning algorithm. (e,f) Distance into the soil matrix based on Euclidean distance maps according to the resin-filled pore distribution.

Supplementary Video Legend

Animated version of the 3D data from Fig. 3. The composite 3D image shows C, Si, and Al (red, green, and blue color, respectively) distribution across a sectioned topsoil microaggregate measured by energy-dispersive X-ray spectroscopy (EDX). The Figure was created using Image J (version 1.8.0_172 https://imagej.nih.gov/ij/download.html)