Socioecological effects of swidden management in traditional Maya agroforests in the Selva Lacandona of Chiapas, Mexico

Falkowski, Tomasz B. (tbfalkowski@nmhu.edu; New Mexico Highlands University, Department of Forestry, Las Vegas, NM, USA); Chankin, Adolfo; Lehmann, Johannes; Drinkwater, Laurie E.; Diemont, Stewart A.W.; Nigh, Ronald

Supplemental Information

Tables

Table 1: Sample sizes (n) and fallow history of sites sampled in this study

Stage	n	Mean fallow duration prior to burning (years)
Milpa	2	0
Robir	1	1
Jurup che	3	2.666667
Pak che kor	4	5
Mehen che	0	NA
Nu kux che	1	32
Tam che	1	NA
All	12	5.545455

Table 2: Sample sizes (n) incubated for different materials in this study

Item	n
Adhered char DBH≥0.1 m	7
Adhered char DBH<0.1 m	10
Surface char	12
Maize	2
Litter biomass	14
Biomass DBH≥0.1 m	15
Biomass DBH<0.1 m	23
Total	83

Figures

Figure 1: Murals and posters found in study communities condemning the use of fire for the sake of ecological conservation

Figure 2: Map of communities where study sites were located

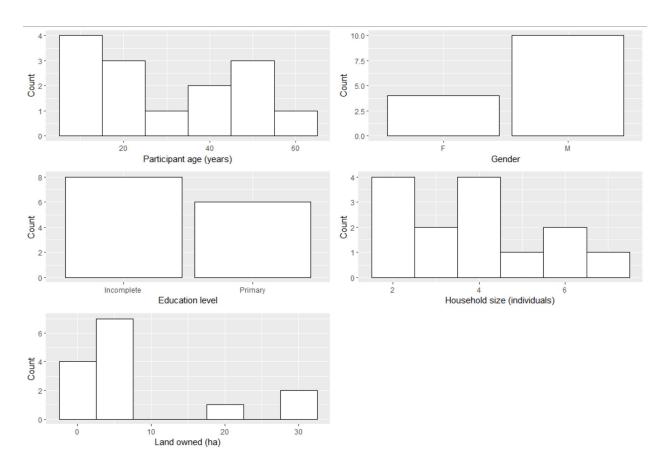


Figure 3: Demographic information for interview participants

Figure 4: Illustrative examples of Maya fire management in traditional swiddens: (a) fire breaks, (b) using water to quench flames to produce char, and (c) dense char deposits are preferred locations for seeding certain crops.

Equations

(a)
$$MRT = \frac{1}{n}, \frac{1}{m}$$

(b)
$$HL = MRT \times \ln(2)$$

Equation 1: Equations calculating mean residence time (MRT) and half life (HL) from double exponential model terms

Interview Protocol

Demographic Questions

- 1. What is your ethnic identity?
- 2. How old are you?
- 3. How many years have you farmed by yourself?
- 4. How much of your harvest did you sell at the market, if any? How much did earn from selling your crops?
- 5. Which of the following items do you or your family own: television, computer, car, motorcycle, cell phone, electricity, running water, maize grinder
- 6. Are you a full-time farmer, or do you have other sources of income?

- 7. Who taught you to farm? How long did you farm with them?
- 8. How much land do you farm?
- 9. Did you attend/complete: primary, secondary, higher education?
- 10. How long have you farmed this land?

Fire Management Questions

- 11. What are the benefits of the burn? Are there any negatives?
- 12. What is the importance of burning for you? Your community?
- 13. How do the burns affect nature/environment?
- 14. How has your fire management changed in your lifetime?
- 15. How does your fire management compare to your parents? How will it be different for your children?
- 16. How do you control the fire? How often do you burn?
- 17. Has the government influenced your fire management?
- 18. How has the weather changed over the past years? How has this influenced your burning?